Normalized defining polynomial
\( x^{18} + 3 x^{16} + 1008 x^{14} + 195268 x^{12} - 268014 x^{10} - 64460646 x^{8} + 2448021928 x^{6} + 5576982228 x^{4} - 170682814251 x^{2} + 832184947467 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-490669523847518219543603050415476754595311155180270121791488=-\,2^{12}\cdot 3^{9}\cdot 7^{12}\cdot 2953^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2070.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 2953$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{12} a^{6} + \frac{1}{12} a^{4} - \frac{5}{12} a^{2} + \frac{1}{4}$, $\frac{1}{12} a^{7} + \frac{1}{12} a^{5} + \frac{1}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{324} a^{8} + \frac{7}{54} a^{4} + \frac{26}{81} a^{2} - \frac{49}{108}$, $\frac{1}{648} a^{9} - \frac{1}{648} a^{8} + \frac{7}{108} a^{5} - \frac{7}{108} a^{4} + \frac{13}{81} a^{3} - \frac{13}{81} a^{2} - \frac{49}{216} a + \frac{49}{216}$, $\frac{1}{1296} a^{10} - \frac{1}{1296} a^{8} - \frac{1}{24} a^{7} - \frac{1}{108} a^{6} - \frac{1}{24} a^{5} + \frac{1}{162} a^{4} + \frac{5}{24} a^{3} + \frac{19}{1296} a^{2} + \frac{3}{8} a + \frac{211}{432}$, $\frac{1}{1296} a^{11} - \frac{1}{1296} a^{9} - \frac{1}{648} a^{8} - \frac{1}{108} a^{7} - \frac{1}{24} a^{6} + \frac{1}{162} a^{5} - \frac{23}{216} a^{4} + \frac{19}{1296} a^{3} - \frac{293}{648} a^{2} + \frac{211}{432} a + \frac{11}{108}$, $\frac{1}{104976} a^{12} + \frac{1}{52488} a^{10} + \frac{13}{34992} a^{8} + \frac{113}{6561} a^{6} - \frac{8165}{104976} a^{4} - \frac{4691}{17496} a^{2} + \frac{3829}{11664}$, $\frac{1}{209952} a^{13} - \frac{1}{209952} a^{12} + \frac{1}{104976} a^{11} - \frac{1}{104976} a^{10} + \frac{13}{69984} a^{9} - \frac{13}{69984} a^{8} + \frac{113}{13122} a^{7} - \frac{113}{13122} a^{6} + \frac{44323}{209952} a^{5} + \frac{8165}{209952} a^{4} - \frac{4691}{34992} a^{3} - \frac{12805}{34992} a^{2} + \frac{9661}{23328} a - \frac{3829}{23328}$, $\frac{1}{1422844704} a^{14} + \frac{3349}{1422844704} a^{12} - \frac{398753}{1422844704} a^{10} + \frac{1780043}{1422844704} a^{8} - \frac{1}{24} a^{7} - \frac{26602381}{1422844704} a^{6} + \frac{5}{24} a^{5} - \frac{14836393}{1422844704} a^{4} + \frac{5}{24} a^{3} - \frac{124155857}{474281568} a^{2} + \frac{1}{8} a + \frac{12138449}{158093856}$, $\frac{1}{1422844704} a^{15} + \frac{3349}{1422844704} a^{13} - \frac{398753}{1422844704} a^{11} - \frac{415705}{1422844704} a^{9} - \frac{26602381}{1422844704} a^{7} - \frac{1}{24} a^{6} - \frac{107057809}{1422844704} a^{5} + \frac{5}{24} a^{4} + \frac{36865663}{474281568} a^{3} + \frac{5}{24} a^{2} - \frac{31044595}{158093856} a + \frac{1}{8}$, $\frac{1}{79056478003233089117376} a^{16} + \frac{4522982816945}{39528239001616544558688} a^{14} - \frac{164622050608597909}{39528239001616544558688} a^{12} - \frac{9404152094768965475}{39528239001616544558688} a^{10} + \frac{4971145766831051609}{4941029875202068069836} a^{8} - \frac{1413784440079765272893}{39528239001616544558688} a^{6} - \frac{1}{4} a^{5} + \frac{481554815820206281525}{4392026555735171617632} a^{4} - \frac{638573188316483614051}{1464008851911723872544} a^{2} - \frac{1}{4} a - \frac{852146467179022700563}{2928017703823447745088}$, $\frac{1}{13879234334725604358535647936} a^{17} + \frac{581300518236396251}{1734904291840700544816955992} a^{15} - \frac{12540697848734675270929}{6939617167362802179267823968} a^{13} - \frac{1}{209952} a^{12} - \frac{1205998687146544146061873}{3469808583681401089633911984} a^{11} - \frac{1}{104976} a^{10} + \frac{2235911762192428179089585}{3469808583681401089633911984} a^{9} - \frac{13}{69984} a^{8} - \frac{47009722066836438902665109}{1734904291840700544816955992} a^{7} - \frac{113}{13122} a^{6} + \frac{120222728708500055710451881}{771068574151422464363091552} a^{5} + \frac{8165}{209952} a^{4} - \frac{7108284197051614392771137}{128511429025237077393848592} a^{3} - \frac{12805}{34992} a^{2} - \frac{47151058762687664818896223}{514045716100948309575394368} a + \frac{7835}{23328}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}\times C_{18}\times C_{36}\times C_{36}\times C_{36}\times C_{468}$, which has order $28298170368$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{516304348573}{220301810046278699679936} a^{17} + \frac{720064885457}{27537726255784837459992} a^{15} + \frac{8478033358066}{3442215781973104682499} a^{13} + \frac{3286168276318543}{6884431563946209364998} a^{11} + \frac{353236481261555725}{110150905023139349839968} a^{9} - \frac{4066193272590172397}{27537726255784837459992} a^{7} + \frac{14217047269124766715}{3059747361753870828888} a^{5} + \frac{8267299427135731393}{127489473406411284537} a^{3} - \frac{1979636464787085161917}{8159326298010322210368} a + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63617903134123.17 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.5127482892.1 x3, 3.3.427290241.1, 6.0.78873242423258050992.1, 6.0.184589384112.1 x2, 6.0.4929577651453628187.1, Deg 9 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 2953 | Data not computed | ||||||