Normalized defining polynomial
\( x^{18} - 3 x^{17} - 354 x^{16} + 2172 x^{15} + 44394 x^{14} - 428718 x^{13} - 1669332 x^{12} + 31785648 x^{11} - 47149131 x^{10} - 927212375 x^{9} + 4765541070 x^{8} + 972777468 x^{7} - 70540733496 x^{6} + 158074945248 x^{5} + 512148044928 x^{4} - 3757461785088 x^{3} + 9971179180032 x^{2} - 13774599094272 x + 8983456251904 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48805253563272524881557588987780226277016000000000=-\,2^{12}\cdot 3^{31}\cdot 5^{9}\cdot 61^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $576.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{5} + \frac{1}{12} a^{4} + \frac{1}{12} a^{3} - \frac{1}{12} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{48} a^{6} + \frac{1}{48} a^{5} - \frac{5}{48} a^{4} + \frac{11}{48} a^{3} - \frac{1}{12} a^{2} - \frac{1}{12} a$, $\frac{1}{48} a^{7} - \frac{1}{24} a^{5} - \frac{1}{12} a^{4} - \frac{11}{48} a^{3} - \frac{1}{12} a^{2} - \frac{1}{4} a - \frac{1}{3}$, $\frac{1}{96} a^{8} - \frac{1}{48} a^{5} + \frac{1}{32} a^{4} - \frac{1}{16} a^{3} - \frac{5}{24} a^{2} + \frac{1}{4} a$, $\frac{1}{3456} a^{9} - \frac{1}{576} a^{8} - \frac{1}{576} a^{7} - \frac{1}{288} a^{6} + \frac{19}{1152} a^{5} - \frac{1}{576} a^{4} - \frac{59}{288} a^{3} + \frac{35}{144} a^{2} + \frac{17}{36} a + \frac{4}{27}$, $\frac{1}{6912} a^{10} - \frac{1}{6912} a^{9} - \frac{7}{1152} a^{7} + \frac{23}{2304} a^{6} - \frac{1}{768} a^{5} + \frac{25}{384} a^{4} - \frac{19}{192} a^{3} + \frac{23}{96} a^{2} - \frac{53}{216} a + \frac{1}{27}$, $\frac{1}{13824} a^{11} - \frac{1}{13824} a^{10} - \frac{1}{6912} a^{9} + \frac{7}{2304} a^{8} + \frac{3}{512} a^{7} - \frac{43}{4608} a^{6} - \frac{11}{288} a^{5} - \frac{13}{576} a^{4} + \frac{5}{144} a^{3} + \frac{203}{864} a^{2} - \frac{29}{216} a - \frac{11}{27}$, $\frac{1}{27648} a^{12} - \frac{1}{27648} a^{10} + \frac{1}{13824} a^{9} - \frac{31}{9216} a^{8} - \frac{17}{2304} a^{7} + \frac{67}{9216} a^{6} - \frac{5}{4608} a^{5} + \frac{71}{2304} a^{4} - \frac{443}{3456} a^{3} + \frac{7}{72} a^{2} - \frac{103}{216} a + \frac{4}{27}$, $\frac{1}{110592} a^{13} + \frac{1}{36864} a^{11} + \frac{1}{18432} a^{10} + \frac{1}{36864} a^{9} - \frac{11}{9216} a^{8} - \frac{353}{36864} a^{7} + \frac{65}{18432} a^{6} - \frac{11}{9216} a^{5} - \frac{1673}{13824} a^{4} - \frac{247}{1152} a^{3} + \frac{13}{96} a^{2} - \frac{1}{8} a - \frac{1}{3}$, $\frac{1}{663552} a^{14} + \frac{1}{663552} a^{13} + \frac{7}{663552} a^{12} - \frac{7}{663552} a^{11} - \frac{43}{663552} a^{10} - \frac{25}{663552} a^{9} + \frac{407}{221184} a^{8} + \frac{1505}{221184} a^{7} - \frac{215}{110592} a^{6} - \frac{577}{165888} a^{5} + \frac{7933}{82944} a^{4} - \frac{311}{5184} a^{3} + \frac{623}{5184} a^{2} + \frac{97}{648} a + \frac{2}{81}$, $\frac{1}{1327104} a^{15} - \frac{1}{1327104} a^{14} - \frac{1}{1327104} a^{13} + \frac{1}{442368} a^{12} - \frac{47}{1327104} a^{11} + \frac{1}{1327104} a^{10} + \frac{149}{1327104} a^{9} + \frac{211}{442368} a^{8} - \frac{325}{221184} a^{7} - \frac{2767}{331776} a^{6} - \frac{1417}{165888} a^{5} + \frac{913}{20736} a^{4} + \frac{23}{288} a^{3} - \frac{275}{2592} a^{2} - \frac{22}{81} a + \frac{22}{81}$, $\frac{1}{2654208} a^{16} - \frac{1}{1327104} a^{14} + \frac{1}{1327104} a^{13} + \frac{1}{663552} a^{12} - \frac{23}{1327104} a^{11} - \frac{5}{147456} a^{10} - \frac{41}{1327104} a^{9} - \frac{4231}{884736} a^{8} + \frac{9907}{1327104} a^{7} - \frac{1015}{221184} a^{6} - \frac{5741}{331776} a^{5} - \frac{205}{20736} a^{4} + \frac{4069}{20736} a^{3} - \frac{161}{2592} a^{2} + \frac{23}{54} a - \frac{16}{81}$, $\frac{1}{2137029968934953295225744650148334952513352800591413248} a^{17} + \frac{188387545450031423374941242355433782884825072021}{1068514984467476647612872325074167476256676400295706624} a^{16} - \frac{67105163017554388405194790966045244106310401803}{267128746116869161903218081268541869064169100073926656} a^{15} + \frac{100741418055594333752894629507930715597996799863}{178085830744579441268812054179027912709446066715951104} a^{14} + \frac{369560520664174115967753190540887323512670840287}{118723887163052960845874702786018608472964044477300736} a^{13} + \frac{3982213400201729375291154932125995715744761890465}{267128746116869161903218081268541869064169100073926656} a^{12} - \frac{18367232268915899500856344185801078437577654204751}{534257492233738323806436162537083738128338200147853312} a^{11} + \frac{9883857749219631847786766293157202551076313166297}{534257492233738323806436162537083738128338200147853312} a^{10} + \frac{9520897656036085076395462913324643358870605294305}{237447774326105921691749405572037216945928088954601472} a^{9} - \frac{2507773834872811085191674413109356665223740333671137}{1068514984467476647612872325074167476256676400295706624} a^{8} + \frac{4602823381140841904099699551078158392693708441824487}{534257492233738323806436162537083738128338200147853312} a^{7} + \frac{1076766117568781899044739576737734316321379161537251}{267128746116869161903218081268541869064169100073926656} a^{6} - \frac{882654429085759215844645698332613096108951904113191}{22260728843072430158601506772378489088680758339493888} a^{5} + \frac{52767578688861589920012162292110798375770671740707}{5565182210768107539650376693094622272170189584873472} a^{4} - \frac{803640786844559522509339375898268449953096339221449}{4173886658076080654737782519820966704127642188655104} a^{3} + \frac{732911640274905178768978839983191821882671305337}{16304244758109690057569462968050651187998602299434} a^{2} + \frac{14515607990414087052815672978627764748146313780533}{32608489516219380115138925936101302375997204598868} a - \frac{1297223558774355377998128241820746382865210097403}{2717374126351615009594910494675108531333100383239}$
Class group and class number
$C_{3}\times C_{3}\times C_{18}\times C_{18436230}$, which has order $2986669260$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 248523426321.35065 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.6588.1, 3.3.301401.1, 6.0.16275654000.3, 6.0.34065961050375.6, 9.9.2886075179454821059008.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $61$ | 61.3.2.3 | $x^{3} - 244$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 61.3.2.3 | $x^{3} - 244$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 61.6.5.2 | $x^{6} - 244$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 61.6.5.2 | $x^{6} - 244$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |