Normalized defining polynomial
\( x^{18} - 5 x^{17} + 36 x^{16} - 112 x^{15} + 403 x^{14} - 907 x^{13} + 2210 x^{12} - 3775 x^{11} + 6692 x^{10} - 8613 x^{9} + 11270 x^{8} - 10565 x^{7} + 10396 x^{6} - 7007 x^{5} + 6151 x^{4} - 3340 x^{3} + 3492 x^{2} - 1375 x + 1181 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48432172600570524634593718272=-\,2^{12}\cdot 3^{14}\cdot 47^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} - \frac{1}{7} a^{15} - \frac{3}{7} a^{13} - \frac{1}{7} a^{12} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} - \frac{2}{7} a^{9} - \frac{3}{7} a^{8} - \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{2} - \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{272600759284224003512573533} a^{17} + \frac{1904538258485119257905517}{272600759284224003512573533} a^{16} + \frac{42122387392505213043171259}{272600759284224003512573533} a^{15} + \frac{66323106718858616519134022}{272600759284224003512573533} a^{14} - \frac{43298923398450675593224792}{272600759284224003512573533} a^{13} - \frac{77233794175415882987410800}{272600759284224003512573533} a^{12} + \frac{75433504023885683670966009}{272600759284224003512573533} a^{11} + \frac{120983471959659005008132783}{272600759284224003512573533} a^{10} + \frac{78316757389705421723070908}{272600759284224003512573533} a^{9} + \frac{58600370813024942836618417}{272600759284224003512573533} a^{8} + \frac{124837041586071200141955988}{272600759284224003512573533} a^{7} - \frac{58238163474053771504364410}{272600759284224003512573533} a^{6} - \frac{6515557772156497127007935}{272600759284224003512573533} a^{5} - \frac{46559608743577169590350029}{272600759284224003512573533} a^{4} + \frac{51090505780653525489412952}{272600759284224003512573533} a^{3} + \frac{87905265419618689228118364}{272600759284224003512573533} a^{2} + \frac{60326622018864394278068853}{272600759284224003512573533} a - \frac{82490357475171091389425551}{272600759284224003512573533}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3723839.32807 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3:S_4$ (as 18T153):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_3:S_3:S_4$ |
| Character table for $C_3:S_3:S_4$ |
Intermediate fields
| 3.3.564.1, 6.0.14950512.2, 9.3.682999190208.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.12.14.15 | $x^{12} + 9 x^{11} - 6 x^{10} + 6 x^{9} - 3 x^{8} + 9 x^{7} + 6 x^{6} - 9 x^{5} - 9 x^{4} - 9 x^{3} - 9 x^{2} + 9$ | $6$ | $2$ | $14$ | $C_6\times S_3$ | $[3/2]_{2}^{6}$ | |
| 47 | Data not computed | ||||||