Normalized defining polynomial
\( x^{18} - 7 x^{17} + 228 x^{16} - 1298 x^{15} + 23619 x^{14} - 113727 x^{13} + 1489716 x^{12} - 6163867 x^{11} + 63312072 x^{10} - 224224367 x^{9} + 1870301948 x^{8} - 5538379279 x^{7} + 38018012120 x^{6} - 89558691519 x^{5} + 506133264109 x^{4} - 856272430360 x^{3} + 3940350373970 x^{2} - 3662150838941 x + 13377444091051 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48163618447522673224353606318670413146877952=-\,2^{12}\cdot 37^{14}\cdot 103^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $267.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{17} - \frac{4174292033036070138615089897784131172161101924375754009190031332921981092}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{16} - \frac{7805274542154520213958515917376690341798655858903923030878436455583669077}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{15} + \frac{9652588484009775737728066705387867407227091883413470918301773661008295064}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{14} + \frac{4779466757882480853339425979445545688004243039716154172323034122300198819}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{13} - \frac{3226381881031734554272998027972344994654795151569276190590563339066749783}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{12} - \frac{3293828469459981809841258166568575723784857524567776091923647077063022381}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{11} - \frac{9579265923659635051319290165920343917022190775369911716365839364062361820}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{10} - \frac{2288862576457678104656507627782521383467317217048538623749072391976064768}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{9} + \frac{9976456727258875481765302137369916170821071677543881905329760005486811398}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{8} + \frac{2717224437649494892150490863251800898935020639933914737896609017678950323}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{7} - \frac{7351307269727809565256921383264708277294969876620900114513605878188735509}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{6} + \frac{8905969036984199363576902420333591392282728939051624686361295258874681935}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{5} + \frac{7579864001673806206863815016307353216690431694836072625134884483013881048}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{4} + \frac{11027151248311293082807225610603521676144109007944308344223357508289649907}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{3} - \frac{9974217279444510451814037134797997491460089556649537538820732131008501791}{25725847456625775483413913687378737454585963527701147648635750149031884299} a^{2} + \frac{12561230712509318012437429200259524010629718590012432083984199807467732802}{25725847456625775483413913687378737454585963527701147648635750149031884299} a + \frac{3791202957891810737832908349069805545578245491053104930846908857254024}{15811830028657514126253173747620613063666849125815087675867086754168337}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{208}\times C_{65520}$, which has order $436101120$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-103}) \), 3.3.1369.1, 3.3.148.1, 6.0.2047946327047.1, 6.0.23935092208.2, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $103$ | 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |