Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} - 12 x^{15} + 12 x^{14} + 20 x^{13} - 24 x^{12} + 32 x^{11} - 29 x^{10} + 3 x^{9} + 19 x^{8} - 52 x^{7} + 24 x^{6} + 24 x^{5} + 38 x^{4} + 2 x^{3} - 5 x^{2} + x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-480852007416803909173248=-\,2^{20}\cdot 3^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{11} - \frac{1}{6} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{11} - \frac{1}{3} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{14} - \frac{1}{3} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6}$, $\frac{1}{414} a^{15} - \frac{1}{207} a^{14} + \frac{1}{23} a^{13} + \frac{5}{207} a^{12} + \frac{17}{414} a^{11} + \frac{89}{207} a^{10} - \frac{79}{414} a^{9} + \frac{16}{69} a^{8} + \frac{173}{414} a^{7} + \frac{86}{207} a^{6} + \frac{47}{414} a^{5} - \frac{5}{69} a^{4} + \frac{65}{207} a^{3} + \frac{10}{69} a^{2} - \frac{7}{414} a + \frac{70}{207}$, $\frac{1}{4554} a^{16} - \frac{1}{4554} a^{15} - \frac{61}{2277} a^{14} + \frac{83}{2277} a^{13} - \frac{10}{253} a^{12} + \frac{65}{1518} a^{11} - \frac{248}{759} a^{10} + \frac{1259}{4554} a^{9} - \frac{1525}{4554} a^{8} - \frac{25}{66} a^{7} - \frac{76}{253} a^{6} + \frac{845}{4554} a^{5} - \frac{433}{2277} a^{4} + \frac{1130}{2277} a^{3} + \frac{337}{2277} a^{2} - \frac{419}{4554} a + \frac{1037}{4554}$, $\frac{1}{14805054} a^{17} - \frac{200}{7402527} a^{16} + \frac{3004}{7402527} a^{15} - \frac{1159561}{14805054} a^{14} + \frac{102011}{2467509} a^{13} + \frac{174865}{14805054} a^{12} + \frac{443974}{7402527} a^{11} - \frac{224801}{2467509} a^{10} + \frac{122105}{1345914} a^{9} - \frac{338191}{4935018} a^{8} - \frac{1963802}{7402527} a^{7} + \frac{130463}{822503} a^{6} + \frac{686077}{2467509} a^{5} - \frac{474599}{14805054} a^{4} + \frac{798268}{2467509} a^{3} + \frac{2392501}{14805054} a^{2} + \frac{1032829}{14805054} a - \frac{333596}{7402527}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{23114}{224319} a^{17} - \frac{314615}{672957} a^{16} + \frac{686800}{672957} a^{15} - \frac{478340}{224319} a^{14} + \frac{2234236}{672957} a^{13} - \frac{149488}{672957} a^{12} - \frac{3527300}{672957} a^{11} + \frac{228880}{29259} a^{10} - \frac{715190}{74773} a^{9} + \frac{4463678}{672957} a^{8} + \frac{148060}{672957} a^{7} - \frac{5662156}{672957} a^{6} + \frac{2771248}{224319} a^{5} - \frac{2586224}{672957} a^{4} + \frac{488248}{224319} a^{3} - \frac{3700996}{672957} a^{2} - \frac{334246}{672957} a + \frac{208286}{224319} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 128496.88254347249 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.676.1, 3.1.2028.1 x3, 6.0.12338352.1, 6.0.12338352.2, 9.1.133451615232.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.16.13 | $x^{12} + 12 x^{10} + 12 x^{8} + 8 x^{6} + 32 x^{4} - 16 x^{2} + 16$ | $6$ | $2$ | $16$ | $D_6$ | $[2]_{3}^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |