Normalized defining polynomial
\( x^{18} + x^{16} - 2 x^{15} + 10 x^{14} - 25 x^{13} - 80 x^{12} - 102 x^{11} + 108 x^{10} + 363 x^{9} + 375 x^{8} + 30 x^{7} - 165 x^{6} - 117 x^{5} + 261 x^{4} + 675 x^{3} + 846 x^{2} + 585 x + 225 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48036106180347836985520128=-\,2^{12}\cdot 3^{25}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{63} a^{12} - \frac{3}{7} a^{11} - \frac{8}{63} a^{10} + \frac{22}{63} a^{9} - \frac{26}{63} a^{8} - \frac{1}{63} a^{7} + \frac{31}{63} a^{6} - \frac{2}{21} a^{5} + \frac{1}{7} a^{4} + \frac{2}{21} a^{3} - \frac{5}{21} a^{2} + \frac{2}{21} a - \frac{2}{21}$, $\frac{1}{63} a^{13} + \frac{19}{63} a^{11} - \frac{5}{63} a^{10} + \frac{1}{63} a^{9} - \frac{10}{63} a^{8} + \frac{4}{63} a^{7} + \frac{4}{21} a^{6} - \frac{3}{7} a^{5} - \frac{1}{21} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{10}{21} a + \frac{3}{7}$, $\frac{1}{189} a^{14} + \frac{1}{189} a^{12} - \frac{86}{189} a^{11} - \frac{44}{189} a^{10} - \frac{13}{27} a^{9} + \frac{94}{189} a^{8} - \frac{11}{63} a^{7} + \frac{5}{21} a^{6} - \frac{1}{9} a^{5} + \frac{16}{63} a^{4} - \frac{1}{63} a^{3} + \frac{16}{63} a^{2} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{189} a^{15} + \frac{1}{189} a^{13} + \frac{1}{189} a^{12} + \frac{64}{189} a^{11} - \frac{31}{189} a^{10} - \frac{71}{189} a^{9} - \frac{1}{7} a^{8} - \frac{2}{9} a^{7} + \frac{10}{63} a^{6} + \frac{31}{63} a^{5} + \frac{8}{63} a^{4} + \frac{1}{63} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{5}{21}$, $\frac{1}{6615} a^{16} - \frac{16}{6615} a^{15} - \frac{13}{6615} a^{14} - \frac{8}{2205} a^{13} + \frac{19}{6615} a^{12} + \frac{1706}{6615} a^{11} - \frac{349}{735} a^{10} + \frac{61}{135} a^{9} + \frac{2389}{6615} a^{8} + \frac{211}{735} a^{7} - \frac{908}{2205} a^{6} - \frac{73}{245} a^{5} + \frac{48}{245} a^{4} - \frac{116}{2205} a^{3} - \frac{737}{2205} a^{2} - \frac{1}{35} a - \frac{11}{147}$, $\frac{1}{2399488446285} a^{17} - \frac{5338834}{88869942455} a^{16} - \frac{5343444236}{2399488446285} a^{15} - \frac{2026982306}{799829482095} a^{14} + \frac{15787513372}{2399488446285} a^{13} + \frac{30788542}{48969151965} a^{12} - \frac{193091236661}{799829482095} a^{11} - \frac{745678055509}{2399488446285} a^{10} - \frac{746575834604}{2399488446285} a^{9} + \frac{132552556103}{342784063755} a^{8} - \frac{357798558349}{799829482095} a^{7} - \frac{209623558831}{799829482095} a^{6} + \frac{228267665021}{799829482095} a^{5} + \frac{44753551207}{159965896419} a^{4} + \frac{10559079341}{159965896419} a^{3} - \frac{284164443589}{799829482095} a^{2} - \frac{17533335238}{266609827365} a - \frac{7045681574}{17773988491}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8222758}{48969151965} a^{17} - \frac{2083697}{1813672295} a^{16} + \frac{253334497}{48969151965} a^{15} - \frac{505530464}{48969151965} a^{14} + \frac{1040501191}{48969151965} a^{13} - \frac{2314488691}{48969151965} a^{12} + \frac{5159676151}{48969151965} a^{11} - \frac{2882825389}{16323050655} a^{10} + \frac{554039267}{5441016885} a^{9} - \frac{4768154179}{16323050655} a^{8} + \frac{7908952523}{16323050655} a^{7} + \frac{182394982}{16323050655} a^{6} + \frac{4722233098}{16323050655} a^{5} - \frac{295233656}{1088203377} a^{4} + \frac{227745688}{1088203377} a^{3} - \frac{366021613}{1813672295} a^{2} + \frac{5628007861}{5441016885} a + \frac{800959222}{1088203377} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1035241.6408124544 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.588.1 x3, 6.0.1037232.1, 9.3.1333834713792.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.11.11 | $x^{6} + 9 x^{3} + 21$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[5/2]_{2}^{3}$ | |
| 3.6.11.11 | $x^{6} + 9 x^{3} + 21$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[5/2]_{2}^{3}$ | |
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |