Normalized defining polynomial
\( x^{18} - 6 x^{17} + 22 x^{16} - 70 x^{15} + 202 x^{14} - 488 x^{13} + 923 x^{12} - 1110 x^{11} + 298 x^{10} + 1736 x^{9} - 3170 x^{8} + 1954 x^{7} + 839 x^{6} - 2148 x^{5} + 1588 x^{4} - 730 x^{3} + 220 x^{2} - 26 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48036106180347836985520128=-\,2^{12}\cdot 3^{25}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{12} a^{15} - \frac{1}{6} a^{13} - \frac{1}{4} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{4} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{12}$, $\frac{1}{1956} a^{16} - \frac{27}{652} a^{15} - \frac{50}{489} a^{14} + \frac{151}{652} a^{13} + \frac{193}{1956} a^{12} - \frac{167}{978} a^{11} - \frac{25}{489} a^{10} - \frac{71}{489} a^{9} - \frac{117}{326} a^{8} - \frac{235}{978} a^{7} - \frac{293}{978} a^{6} - \frac{439}{978} a^{5} - \frac{31}{652} a^{4} - \frac{583}{1956} a^{3} - \frac{101}{978} a^{2} - \frac{511}{1956} a + \frac{115}{652}$, $\frac{1}{226347015203113212} a^{17} + \frac{27210532652383}{226347015203113212} a^{16} - \frac{485080589448461}{113173507601556606} a^{15} - \frac{965570774768317}{113173507601556606} a^{14} - \frac{8950106133134465}{113173507601556606} a^{13} - \frac{14598118421121505}{75449005067704404} a^{12} + \frac{5525055334268275}{113173507601556606} a^{11} + \frac{16159040290766605}{113173507601556606} a^{10} - \frac{3437391971168797}{37724502533852202} a^{9} + \frac{8857120307196962}{56586753800778303} a^{8} + \frac{822076957295306}{18862251266926101} a^{7} - \frac{32836114320071209}{113173507601556606} a^{6} - \frac{7000777817618941}{25149668355901468} a^{5} + \frac{7105398940536257}{25149668355901468} a^{4} - \frac{41125169768859565}{113173507601556606} a^{3} + \frac{2965722545607368}{18862251266926101} a^{2} - \frac{22070318956147826}{56586753800778303} a + \frac{39892088193243191}{226347015203113212}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{139063139641}{61330382934} a^{17} + \frac{547091680527}{40886921956} a^{16} - \frac{2979488258335}{61330382934} a^{15} + \frac{6297303461945}{40886921956} a^{14} - \frac{27177325773031}{61330382934} a^{13} + \frac{130478727022517}{122660765868} a^{12} - \frac{61041387893521}{30665191467} a^{11} + \frac{71345039720806}{30665191467} a^{10} - \frac{9336422718013}{20443460978} a^{9} - \frac{121805050491734}{30665191467} a^{8} + \frac{417109291292785}{61330382934} a^{7} - \frac{232328248160653}{61330382934} a^{6} - \frac{22964437977312}{10221730489} a^{5} + \frac{570093480885209}{122660765868} a^{4} - \frac{194126931977957}{61330382934} a^{3} + \frac{166872942983111}{122660765868} a^{2} - \frac{7592043247467}{20443460978} a + \frac{1027349423205}{40886921956} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 732150.8656444304 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.588.1 x3, 6.0.1037232.1, 9.3.1333834713792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.11.11 | $x^{6} + 9 x^{3} + 21$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[5/2]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.11.11 | $x^{6} + 9 x^{3} + 21$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[5/2]_{2}^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |