Normalized defining polynomial
\( x^{18} + 141 x^{16} - 360 x^{15} + 13683 x^{14} - 71064 x^{13} + 1291103 x^{12} - 11920464 x^{11} + 77297904 x^{10} - 445448336 x^{9} + 1752021792 x^{8} - 13129615872 x^{7} + 55401409440 x^{6} - 99026005248 x^{5} + 847107279360 x^{4} - 3040844951808 x^{3} + 2031770407680 x^{2} - 19444819046400 x + 63555755265792 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48015245256971127697547575538546724520114168666540072247586816=-\,2^{12}\cdot 3^{18}\cdot 17^{12}\cdot 23^{9}\cdot 313^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2671.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 23, 313$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{7} - \frac{1}{4} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} + \frac{1}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{1152} a^{12} + \frac{1}{96} a^{11} - \frac{3}{128} a^{10} + \frac{5}{96} a^{9} - \frac{23}{384} a^{8} + \frac{1}{32} a^{7} + \frac{71}{1152} a^{6} - \frac{19}{96} a^{5} - \frac{11}{48} a^{4} - \frac{25}{144} a^{3} - \frac{1}{3} a^{2} + \frac{5}{12} a + \frac{5}{24}$, $\frac{1}{2304} a^{13} + \frac{5}{256} a^{11} - \frac{1}{48} a^{10} + \frac{1}{768} a^{9} - \frac{1}{2304} a^{7} + \frac{3}{32} a^{6} + \frac{11}{48} a^{5} - \frac{25}{288} a^{4} + \frac{3}{8} a^{3} - \frac{1}{6} a^{2} + \frac{5}{48} a - \frac{1}{4}$, $\frac{1}{4608} a^{14} + \frac{1}{4608} a^{12} + \frac{13}{1536} a^{10} + \frac{5}{96} a^{9} - \frac{133}{4608} a^{8} - \frac{3}{64} a^{7} + \frac{71}{1152} a^{6} + \frac{5}{576} a^{5} - \frac{11}{48} a^{4} - \frac{7}{144} a^{3} + \frac{7}{32} a^{2} + \frac{1}{24} a + \frac{5}{24}$, $\frac{1}{32514048} a^{15} - \frac{1}{55296} a^{14} + \frac{1615}{10838016} a^{13} + \frac{437}{1354752} a^{12} - \frac{291791}{10838016} a^{11} + \frac{6233}{225792} a^{10} + \frac{284975}{32514048} a^{9} + \frac{17989}{677376} a^{8} - \frac{5209}{338688} a^{7} - \frac{89045}{1161216} a^{6} + \frac{165941}{677376} a^{5} + \frac{433}{84672} a^{4} + \frac{278335}{677376} a^{3} + \frac{11899}{28224} a^{2} + \frac{3931}{14112} a + \frac{21943}{56448}$, $\frac{1}{6795436032} a^{16} - \frac{1}{283143168} a^{15} - \frac{94817}{2265145344} a^{14} + \frac{1621}{566286336} a^{13} - \frac{74639}{2265145344} a^{12} - \frac{291077}{188762112} a^{11} - \frac{103853809}{6795436032} a^{10} - \frac{4963477}{80898048} a^{9} - \frac{556723}{17696448} a^{8} - \frac{90518699}{1698859008} a^{7} - \frac{1061141}{8848224} a^{6} - \frac{717097}{35392896} a^{5} + \frac{26845711}{141571584} a^{4} - \frac{1643065}{11797632} a^{3} - \frac{71237}{2949408} a^{2} + \frac{835855}{11797632} a - \frac{58439}{983136}$, $\frac{1}{2229713156783281414541773229805852205190859814751976334678253582106624} a^{17} - \frac{936869551446160218864333741453923758019743417660987393935}{13763661461625193916924526109912667933276912436740594658507738161152} a^{16} + \frac{400687641735532876946895062765981910400127961917053320385541}{202701196071207401321979384527804745926441801341088757698023052918784} a^{15} - \frac{208998399611621300136589024368296506379497173868004610871217541}{13763661461625193916924526109912667933276912436740594658507738161152} a^{14} + \frac{107201614289333154694822476898087871168780958425362025301819409679}{743237718927760471513924409935284068396953271583992111559417860702208} a^{13} + \frac{51417965427812337968041897059505331909468795594567846977550535863}{371618859463880235756962204967642034198476635791996055779708930351104} a^{12} - \frac{9649660227104942645144256152235487378857344397701158397420127333115}{2229713156783281414541773229805852205190859814751976334678253582106624} a^{11} + \frac{343245086078902889487175024897975436456214247393349395161788279567}{17696136164946677893188676427030573057070315990095050275224234778624} a^{10} + \frac{35046777184137459228511872725886940288697395739286781886097232622743}{1114856578391640707270886614902926102595429907375988167339126791053312} a^{9} - \frac{21343238596992281700302907466637004663909870593597875708211982973451}{557428289195820353635443307451463051297714953687994083669563395526656} a^{8} - \frac{4086484938872843066278886526827830386597958675714635163668362532901}{92904714865970058939240551241910508549619158947999013944927232587776} a^{7} - \frac{823000725788281193371430977935855953175170508042801720504822492721}{39816306371130025259674521960818789378408210977713863119254528251904} a^{6} + \frac{3438319238238249784879066701433363435133971832397482241613255737059}{15484119144328343156540091873651751424936526491333168990821205431296} a^{5} - \frac{111612566676417606516143221933348474231302354748464140695767192731}{23226178716492514734810137810477627137404789736999753486231808146944} a^{4} + \frac{458589854803072355238733871391097202202161387914096426976770834919}{23226178716492514734810137810477627137404789736999753486231808146944} a^{3} + \frac{30553094046435019056796976277842174069913443448923001309529316949}{61444917239398187129127348704967267559271930521163369011195259648} a^{2} - \frac{386742150925569707253198368743467141596089801470607263854065044067}{1935514893041042894567511484206468928117065811416646123852650678912} a + \frac{581298740951320712379360759745321287928571904380657974530712583}{1520435893983537230610771000947736785637915012896029948038217344}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}\times C_{6}\times C_{6}\times C_{6}\times C_{36}\times C_{36}\times C_{3420}$, which has order $68931440640$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 342971481898070.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-7199}) \), 3.1.31212.1, 3.1.7199.1 x3, Deg 6, 6.0.373092501599.2, 9.1.11344394363669665966884672.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ | |
| $17$ | 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 313 | Data not computed | ||||||