Normalized defining polynomial
\( x^{18} - 9 x^{17} + 132 x^{16} - 828 x^{15} + 6498 x^{14} - 31242 x^{13} + 164170 x^{12} - 670416 x^{11} + 2543787 x^{10} - 9052937 x^{9} + 25552602 x^{8} - 61654620 x^{7} + 140163682 x^{6} - 24671388 x^{5} + 749479584 x^{4} + 932445416 x^{3} + 6255389784 x^{2} + 2047765272 x + 7031654056 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-479635217269575679584198692398854144=-\,2^{12}\cdot 3^{21}\cdot 7^{15}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6}$, $\frac{1}{28} a^{15} - \frac{1}{14} a^{14} - \frac{1}{28} a^{13} - \frac{1}{14} a^{12} - \frac{5}{28} a^{11} + \frac{3}{14} a^{10} - \frac{1}{28} a^{9} + \frac{1}{14} a^{8} - \frac{3}{14} a^{7} + \frac{1}{14} a^{6} + \frac{3}{7} a^{5} - \frac{3}{14} a^{4} + \frac{2}{7} a^{3}$, $\frac{1}{140} a^{16} - \frac{3}{35} a^{14} - \frac{11}{140} a^{13} + \frac{3}{35} a^{12} - \frac{5}{28} a^{11} + \frac{8}{35} a^{10} + \frac{1}{20} a^{9} - \frac{23}{140} a^{8} - \frac{17}{140} a^{7} + \frac{4}{35} a^{6} + \frac{8}{35} a^{5} + \frac{33}{70} a^{4} + \frac{29}{70} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{46117212652671013857083701943962630993798415658942799656141818533611010741700} a^{17} - \frac{14309228415199943974225766780142565985336136963540198588353284343614546188}{11529303163167753464270925485990657748449603914735699914035454633402752685425} a^{16} - \frac{655413108304762075011249348282473479692700319790489767254658634806108166107}{46117212652671013857083701943962630993798415658942799656141818533611010741700} a^{15} + \frac{983428740065403573894538353632213391793545921544187411225005941249347175162}{11529303163167753464270925485990657748449603914735699914035454633402752685425} a^{14} + \frac{206569420507790832958993488626040885725048445619538065550424233567661823287}{6588173236095859122440528849137518713399773665563257093734545504801572963100} a^{13} - \frac{93437794739319629292309342596272908368651580912622194182812299978835867076}{11529303163167753464270925485990657748449603914735699914035454633402752685425} a^{12} + \frac{567306314769731581593004842135012193160839793804158091719181876922181988017}{46117212652671013857083701943962630993798415658942799656141818533611010741700} a^{11} - \frac{315566839413421100710471590362025793448024373653249134546017289540128521049}{1647043309023964780610132212284379678349943416390814273433636376200393240775} a^{10} + \frac{2144774717032443492528168386160112445637125546878092653817341530143913193329}{23058606326335506928541850971981315496899207829471399828070909266805505370850} a^{9} - \frac{3543618944156730267525418964755662025786081664476596858545170942364033610203}{23058606326335506928541850971981315496899207829471399828070909266805505370850} a^{8} - \frac{17868595827187369314882755936000268916836197814813014292541007409928380677}{658817323609585912244052884913751871339977366556325709373454550480157296310} a^{7} + \frac{3368394744981939286024647014219297338189922714088551829917051738072574799}{35474778963593087582372078418432793072152627429955999735493706564316162109} a^{6} - \frac{3297752960366563749712041308554479625466812712978589837181198670926916047517}{11529303163167753464270925485990657748449603914735699914035454633402752685425} a^{5} - \frac{2846573932739739941016782339502368554360873377935669996395172834801249765907}{23058606326335506928541850971981315496899207829471399828070909266805505370850} a^{4} + \frac{4270563074250256104953035551044629178822183977197367910985287606405166348034}{11529303163167753464270925485990657748449603914735699914035454633402752685425} a^{3} + \frac{8581924003128594163014073500602866988318129649047974394080985753410058237}{126695639155689598508471708637259975257687955106985713341048952015414864675} a^{2} - \frac{70924443803941455632751448842387025504880823681061281738985108567125020606}{329408661804792956122026442456875935669988683278162854686727275240078648155} a - \frac{104929590418997526759246764212202492718663584863433221277940708036867599986}{1647043309023964780610132212284379678349943416390814273433636376200393240775}$
Class group and class number
$C_{6}\times C_{6}\times C_{3618}$, which has order $130248$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 296124.35954857944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), 3.3.756.1, \(\Q(\zeta_{7})^+\), 6.0.15975002736.2, 6.0.603993159.1, 9.9.1037426999616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |