Normalized defining polynomial
\( x^{18} - 4 x^{17} + 18 x^{16} - 92 x^{15} + 137 x^{14} - 262 x^{13} + 928 x^{12} + 1544 x^{11} - 1155 x^{10} - 2378 x^{9} - 11207 x^{8} - 11994 x^{7} + 36962 x^{6} - 121254 x^{5} + 174674 x^{4} - 268108 x^{3} + 686430 x^{2} - 163192 x + 580021 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-47844481638506531328000000000=-\,2^{18}\cdot 3^{9}\cdot 5^{9}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{381} a^{15} + \frac{19}{381} a^{14} - \frac{7}{127} a^{12} + \frac{158}{381} a^{11} - \frac{9}{127} a^{10} - \frac{37}{127} a^{9} - \frac{29}{127} a^{8} + \frac{104}{381} a^{7} - \frac{5}{127} a^{6} - \frac{173}{381} a^{5} + \frac{188}{381} a^{4} + \frac{56}{381} a^{3} - \frac{17}{381} a^{2} + \frac{140}{381} a - \frac{70}{381}$, $\frac{1}{381} a^{16} + \frac{20}{381} a^{14} - \frac{7}{127} a^{13} + \frac{49}{381} a^{12} + \frac{19}{381} a^{11} + \frac{7}{127} a^{10} - \frac{10}{381} a^{9} + \frac{106}{381} a^{8} + \frac{41}{381} a^{7} - \frac{142}{381} a^{6} + \frac{173}{381} a^{5} + \frac{40}{381} a^{4} + \frac{62}{381} a^{3} + \frac{82}{381} a^{2} - \frac{190}{381} a + \frac{20}{127}$, $\frac{1}{41571761648623811621586311772042452561831080683} a^{17} - \frac{777182898751780197703081527248367740282492}{3197827819124908586275870136310957889371621591} a^{16} - \frac{17387889731289211059973373848589456141405842}{13857253882874603873862103924014150853943693561} a^{15} - \frac{1611924722510832249346803547351626558874876804}{13857253882874603873862103924014150853943693561} a^{14} - \frac{3583265243952092672521140699449654464020828631}{41571761648623811621586311772042452561831080683} a^{13} - \frac{2552726884171287764963283142378002269543237414}{41571761648623811621586311772042452561831080683} a^{12} + \frac{2362047336780186507855936324772627300471450780}{13857253882874603873862103924014150853943693561} a^{11} - \frac{4807285323730473394280224690749776046707728207}{13857253882874603873862103924014150853943693561} a^{10} - \frac{119709077527974827244400166299645932652236200}{1065942606374969528758623378770319296457207197} a^{9} - \frac{1569324660055895016303770376896447801815736729}{41571761648623811621586311772042452561831080683} a^{8} - \frac{5437662499326713372978567092861734140691016663}{13857253882874603873862103924014150853943693561} a^{7} - \frac{1159035463719940694645067093156327154767851774}{41571761648623811621586311772042452561831080683} a^{6} + \frac{4739517852299154594484151210970858947376197545}{41571761648623811621586311772042452561831080683} a^{5} + \frac{3815983126033087143527735949408298224776066870}{13857253882874603873862103924014150853943693561} a^{4} + \frac{10488061189036928287953953152910175415049003507}{41571761648623811621586311772042452561831080683} a^{3} - \frac{991513630909314192292533800141469656633249632}{3197827819124908586275870136310957889371621591} a^{2} - \frac{19709276297728597751799149296956178445450105684}{41571761648623811621586311772042452561831080683} a + \frac{97057169602910444727458388152418813873544831}{3197827819124908586275870136310957889371621591}$
Class group and class number
$C_{2}\times C_{2}\times C_{26}$, which has order $104$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 90069.70392878134 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-105}) \), \(\Q(\zeta_{7})^+\), 3.1.980.1, 6.0.3630312000.2, 6.0.3630312000.1, 9.3.941192000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||