Normalized defining polynomial
\( x^{18} + 9 x^{16} + 81 x^{14} - 72 x^{13} + 399 x^{12} - 972 x^{11} + 2241 x^{10} - 2056 x^{9} + 7209 x^{8} - 9792 x^{7} + 11457 x^{6} - 5994 x^{5} + 13860 x^{4} - 6792 x^{3} + 1296 x^{2} + 6048 x + 3136 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4775035397693072542278153399=-\,3^{37}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{3} - \frac{1}{3} a$, $\frac{1}{18} a^{11} - \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{18} a^{2} + \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{234} a^{12} + \frac{5}{78} a^{10} + \frac{2}{117} a^{9} + \frac{1}{39} a^{8} - \frac{11}{78} a^{5} + \frac{5}{13} a^{4} + \frac{37}{234} a^{3} - \frac{2}{39} a^{2} + \frac{16}{39} a + \frac{2}{117}$, $\frac{1}{234} a^{13} + \frac{1}{117} a^{11} + \frac{17}{234} a^{10} - \frac{7}{234} a^{9} - \frac{11}{78} a^{6} + \frac{5}{13} a^{5} - \frac{40}{117} a^{4} + \frac{35}{78} a^{3} + \frac{83}{234} a^{2} - \frac{50}{117} a + \frac{4}{9}$, $\frac{1}{468} a^{14} - \frac{1}{468} a^{12} + \frac{1}{117} a^{11} - \frac{1}{12} a^{10} + \frac{7}{234} a^{9} + \frac{7}{156} a^{8} + \frac{1}{78} a^{7} + \frac{17}{156} a^{6} - \frac{5}{117} a^{5} + \frac{49}{156} a^{4} - \frac{53}{234} a^{3} - \frac{155}{468} a^{2} + \frac{17}{78} a + \frac{23}{117}$, $\frac{1}{85176} a^{15} - \frac{1}{1092} a^{14} + \frac{181}{85176} a^{13} + \frac{3}{4732} a^{12} - \frac{19}{728} a^{11} + \frac{1643}{42588} a^{10} + \frac{239}{6552} a^{9} - \frac{781}{14196} a^{8} - \frac{373}{28392} a^{7} - \frac{2545}{42588} a^{6} + \frac{3421}{9464} a^{5} + \frac{1553}{3276} a^{4} + \frac{1943}{28392} a^{3} + \frac{3007}{7098} a^{2} - \frac{3841}{10647} a + \frac{349}{1521}$, $\frac{1}{511056} a^{16} - \frac{1}{255528} a^{15} + \frac{7}{8112} a^{14} + \frac{535}{255528} a^{13} + \frac{425}{511056} a^{12} + \frac{23}{1352} a^{11} + \frac{17335}{511056} a^{10} + \frac{2519}{255528} a^{9} + \frac{1571}{18928} a^{8} + \frac{8987}{255528} a^{7} + \frac{53449}{511056} a^{6} - \frac{12469}{28392} a^{5} - \frac{50383}{511056} a^{4} - \frac{40297}{127764} a^{3} - \frac{516}{1183} a^{2} + \frac{6641}{63882} a - \frac{2273}{4563}$, $\frac{1}{229155552993171168} a^{17} - \frac{2895173709}{4243621351725392} a^{16} - \frac{147753606667}{229155552993171168} a^{15} + \frac{76956455119}{1259096445017424} a^{14} + \frac{11114501063335}{8487242703450784} a^{13} + \frac{37240543445081}{114577776496585584} a^{12} + \frac{369419096187805}{32736507570453024} a^{11} + \frac{23185505684155}{1818694865025168} a^{10} + \frac{1429466438447393}{17627350230243936} a^{9} + \frac{494362348142297}{114577776496585584} a^{8} + \frac{529609410492989}{25461728110352352} a^{7} + \frac{11824785371227669}{114577776496585584} a^{6} - \frac{75164446669711123}{229155552993171168} a^{5} - \frac{196261899537815}{1591358006897022} a^{4} - \frac{291883505245697}{784779291072504} a^{3} - \frac{6934281183290795}{14322222062073198} a^{2} - \frac{274571143913314}{795679003448511} a + \frac{228174108655813}{1023015861576657}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2302656.90616 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.1.3159.2 x3, 3.1.3159.1 x3, 3.1.351.1 x3, 3.1.3159.3 x3, 6.0.389191959.4, 6.0.389191959.6, 6.0.4804839.1, 6.0.389191959.1, 9.1.11065116586329.3 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |