Normalized defining polynomial
\( x^{18} - x^{17} + 5 x^{16} + 10 x^{15} + 30 x^{14} - 32 x^{13} + 262 x^{12} + 20 x^{11} + 187 x^{10} + 427 x^{9} + 1687 x^{8} - 196 x^{7} + 882 x^{6} + 3764 x^{5} + 5354 x^{4} - 6926 x^{3} - 5771 x^{2} + 171 x + 3249 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-47691157991223085851455488=-\,2^{12}\cdot 283^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 283$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{6} a$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{12} a^{2} - \frac{5}{12} a + \frac{1}{4}$, $\frac{1}{12} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{12} a^{9} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} + \frac{1}{4} a^{3} + \frac{7}{24} a^{2} - \frac{1}{6} a + \frac{3}{8}$, $\frac{1}{120} a^{13} - \frac{1}{24} a^{11} + \frac{1}{60} a^{9} - \frac{3}{20} a^{8} + \frac{3}{40} a^{7} - \frac{1}{20} a^{6} - \frac{1}{12} a^{5} - \frac{1}{120} a^{3} - \frac{1}{20} a^{2} - \frac{41}{120} a - \frac{7}{20}$, $\frac{1}{240} a^{14} - \frac{1}{240} a^{13} - \frac{1}{48} a^{11} - \frac{1}{80} a^{10} - \frac{1}{24} a^{9} - \frac{1}{80} a^{8} - \frac{3}{16} a^{7} - \frac{19}{240} a^{6} - \frac{11}{24} a^{5} + \frac{3}{80} a^{4} - \frac{5}{48} a^{3} + \frac{19}{240} a - \frac{21}{80}$, $\frac{1}{720} a^{15} - \frac{1}{720} a^{14} - \frac{1}{360} a^{13} - \frac{1}{144} a^{12} + \frac{3}{80} a^{11} - \frac{1}{72} a^{10} + \frac{11}{240} a^{9} - \frac{23}{240} a^{8} + \frac{143}{720} a^{7} - \frac{49}{360} a^{6} + \frac{269}{720} a^{5} + \frac{7}{144} a^{4} + \frac{37}{120} a^{3} + \frac{151}{720} a^{2} - \frac{47}{240} a + \frac{1}{5}$, $\frac{1}{18000} a^{16} - \frac{1}{4500} a^{15} + \frac{7}{4500} a^{14} - \frac{17}{4500} a^{13} + \frac{4}{375} a^{12} + \frac{43}{2250} a^{11} - \frac{17}{750} a^{10} + \frac{21}{1000} a^{9} + \frac{493}{3600} a^{8} + \frac{23}{225} a^{7} + \frac{683}{4500} a^{6} - \frac{4001}{9000} a^{5} - \frac{23}{150} a^{4} - \frac{533}{1125} a^{3} - \frac{281}{1500} a^{2} + \frac{1247}{3000} a + \frac{749}{2000}$, $\frac{1}{5103770956500726000} a^{17} + \frac{8111899104241}{5103770956500726000} a^{16} + \frac{1174146061114199}{2551885478250363000} a^{15} + \frac{2251046771835221}{2551885478250363000} a^{14} + \frac{339812741807677}{318985684781295375} a^{13} + \frac{2274980755176274}{318985684781295375} a^{12} + \frac{97952313018487661}{2551885478250363000} a^{11} - \frac{50577033485982833}{1275942739125181500} a^{10} - \frac{1503266618565755}{40830167652005808} a^{9} - \frac{197311310723558777}{1020754191300145200} a^{8} + \frac{59050115420573791}{2551885478250363000} a^{7} + \frac{63990338843908268}{318985684781295375} a^{6} - \frac{5721376487678674}{12759427391251815} a^{5} + \frac{177985421072298511}{2551885478250363000} a^{4} - \frac{100365582576694633}{1275942739125181500} a^{3} - \frac{878196230233777529}{2551885478250363000} a^{2} + \frac{766844544794123327}{1701256985500242000} a - \frac{1458769281425491}{5969322756141200}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 249031.858474 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-283}) \), 3.1.283.1 x3, 6.0.22665187.1, 9.1.410511866944.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 283 | Data not computed | ||||||