Normalized defining polynomial
\( x^{18} - 6 x^{17} + 117 x^{16} - 432 x^{15} + 7029 x^{14} - 4380 x^{13} + 269520 x^{12} + 360156 x^{11} + 6871230 x^{10} + 13600116 x^{9} + 121388427 x^{8} + 236256312 x^{7} + 1453703763 x^{6} + 2285310216 x^{5} + 11313506295 x^{4} + 12526883586 x^{3} + 52656339330 x^{2} + 33634384392 x + 143873586899 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-474797564089947061005643868926528923561984=-\,2^{12}\cdot 3^{30}\cdot 7^{15}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $206.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{8} - \frac{1}{3} a^{6} + \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{14} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{42} a^{15} + \frac{1}{42} a^{14} - \frac{1}{21} a^{13} + \frac{1}{21} a^{12} + \frac{1}{42} a^{11} + \frac{1}{21} a^{10} - \frac{1}{42} a^{9} - \frac{5}{14} a^{8} + \frac{1}{21} a^{7} - \frac{1}{21} a^{6} - \frac{1}{42} a^{5} + \frac{19}{42} a^{4} - \frac{1}{7} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{42} a^{16} - \frac{1}{14} a^{14} - \frac{1}{14} a^{13} - \frac{1}{42} a^{12} + \frac{1}{42} a^{11} - \frac{1}{14} a^{10} + \frac{1}{6} a^{9} + \frac{17}{42} a^{8} + \frac{5}{21} a^{7} + \frac{1}{42} a^{6} + \frac{10}{21} a^{5} + \frac{17}{42} a^{4} - \frac{1}{42} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{1375369053593502538749429230077860719380043639530524137021457494825555954814739782} a^{17} + \frac{2444685622630178400059935525189798227228132870450991829756771231702957205041840}{229228175598917089791571538346310119896673939921754022836909582470925992469123297} a^{16} - \frac{573613557224265544196279843128912771884760483284297560216680353097869866115849}{229228175598917089791571538346310119896673939921754022836909582470925992469123297} a^{15} + \frac{72891101729083434825175959156133472983081070418474645511330404770745797704814063}{1375369053593502538749429230077860719380043639530524137021457494825555954814739782} a^{14} + \frac{819655353548159299310473817136891570832377456104999574375259784284979899691591}{196481293370500362678489890011122959911434805647217733860208213546507993544962826} a^{13} + \frac{89660256379999453612481679131954887803926636191574512059465844356533848057328773}{1375369053593502538749429230077860719380043639530524137021457494825555954814739782} a^{12} - \frac{60357890053276677645205500560188377113697613639477014094648778296092345317041603}{1375369053593502538749429230077860719380043639530524137021457494825555954814739782} a^{11} - \frac{26885066511402659371559382287590462611081823708081791642747732913496483360931869}{687684526796751269374714615038930359690021819765262068510728747412777977407369891} a^{10} + \frac{62293474748121551201694995151863916532236798334645798985570801949648858118099118}{687684526796751269374714615038930359690021819765262068510728747412777977407369891} a^{9} - \frac{114265974231009734187953173096917236012276781618831703835347632915341143733073925}{687684526796751269374714615038930359690021819765262068510728747412777977407369891} a^{8} - \frac{13138268233181748074373220793506116695264317226826510236071543351841734491312389}{65493764456833454226163296670374319970478268549072577953402737848835997848320942} a^{7} - \frac{153522808548982877485494427245647406797938526686984089135745127841191288369042997}{458456351197834179583143076692620239793347879843508045673819164941851984938246594} a^{6} + \frac{24702410413352883560492651069106079624774750928653923281978701166622654828502726}{229228175598917089791571538346310119896673939921754022836909582470925992469123297} a^{5} - \frac{240784713499527413222853577444762481369245673181594801616148353444116323670711247}{687684526796751269374714615038930359690021819765262068510728747412777977407369891} a^{4} + \frac{94488314155220118250424402213687715992180262439149814343916787752726337870446839}{196481293370500362678489890011122959911434805647217733860208213546507993544962826} a^{3} + \frac{10238402888627604266542400431945544497188545765211203327870747401909220335757763}{65493764456833454226163296670374319970478268549072577953402737848835997848320942} a^{2} - \frac{2873780306964211637912936394305061587204716180484996092537663267458383491093540}{98240646685250181339244945005561479955717402823608866930104106773253996772481413} a - \frac{35851406683458134655133033459729778325635496789584552368087803820907998537993286}{98240646685250181339244945005561479955717402823608866930104106773253996772481413}$
Class group and class number
$C_{3}\times C_{6}\times C_{126}\times C_{4410}$, which has order $10001880$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4695974.091249611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-119}) \), 3.3.3969.2, 3.3.756.1, 6.0.541760081751.4, 6.0.19655694576.12, 9.9.756284282720064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.9.15.14 | $x^{9} + 3 x^{7} + 3 x^{6} + 6 x^{3} + 15$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ |
| 3.9.15.14 | $x^{9} + 3 x^{7} + 3 x^{6} + 6 x^{3} + 15$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| $7$ | 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |