Normalized defining polynomial
\( x^{18} - x^{17} + 103 x^{16} - 108 x^{15} + 3454 x^{14} - 3989 x^{13} + 46893 x^{12} - 69879 x^{11} + 359244 x^{10} - 608429 x^{9} + 2260520 x^{8} - 2195492 x^{7} + 11950469 x^{6} + 3825443 x^{5} + 41497328 x^{4} + 36129351 x^{3} + 104448324 x^{2} + 69234848 x + 190444864 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-474625342823745253277656048537109375=-\,5^{9}\cdot 7^{15}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(455=5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{455}(256,·)$, $\chi_{455}(1,·)$, $\chi_{455}(386,·)$, $\chi_{455}(69,·)$, $\chi_{455}(326,·)$, $\chi_{455}(129,·)$, $\chi_{455}(264,·)$, $\chi_{455}(194,·)$, $\chi_{455}(16,·)$, $\chi_{455}(81,·)$, $\chi_{455}(211,·)$, $\chi_{455}(261,·)$, $\chi_{455}(454,·)$, $\chi_{455}(199,·)$, $\chi_{455}(244,·)$, $\chi_{455}(374,·)$, $\chi_{455}(439,·)$, $\chi_{455}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} + \frac{1}{4} a^{5} - \frac{3}{8} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2}$, $\frac{1}{48} a^{15} + \frac{1}{48} a^{14} - \frac{1}{12} a^{13} - \frac{5}{48} a^{12} - \frac{1}{12} a^{11} - \frac{1}{4} a^{10} + \frac{5}{48} a^{9} - \frac{3}{16} a^{8} - \frac{23}{48} a^{7} + \frac{7}{24} a^{6} - \frac{13}{48} a^{5} + \frac{1}{3} a^{4} + \frac{11}{24} a^{3} + \frac{11}{48} a^{2} - \frac{1}{3}$, $\frac{1}{110458032} a^{16} - \frac{259261}{55229016} a^{15} + \frac{741431}{110458032} a^{14} - \frac{2403113}{110458032} a^{13} - \frac{5634841}{110458032} a^{12} - \frac{2873307}{18409672} a^{11} - \frac{17917333}{110458032} a^{10} - \frac{3898545}{18409672} a^{9} - \frac{4995713}{27614508} a^{8} - \frac{2611279}{110458032} a^{7} + \frac{11819153}{110458032} a^{6} + \frac{21074071}{110458032} a^{5} + \frac{874330}{6903627} a^{4} - \frac{29441233}{110458032} a^{3} - \frac{106293}{36819344} a^{2} + \frac{8669627}{27614508} a + \frac{634969}{2301209}$, $\frac{1}{1702981492951204423222354742086763739484141893058649985706272} a^{17} - \frac{338900390650415920431240036976738155238921650297403}{283830248825200737203725790347793956580690315509774997617712} a^{16} - \frac{8920933688953468729062401775996305384619936305236019159323}{1702981492951204423222354742086763739484141893058649985706272} a^{15} - \frac{19196993903553905131633004342141715854290470084394895390823}{567660497650401474407451580695587913161380631019549995235424} a^{14} + \frac{21477601374893148417229026787977271625146428205492899997193}{567660497650401474407451580695587913161380631019549995235424} a^{13} - \frac{17101202248566168588251919212877353216040780502005152235973}{425745373237801105805588685521690934871035473264662496426568} a^{12} - \frac{19700067615589985164201191578004221385998035593217703017871}{1702981492951204423222354742086763739484141893058649985706272} a^{11} - \frac{1295801071419533791813391421111860710745069690654565535667}{106436343309450276451397171380422733717758868316165624106642} a^{10} + \frac{10817243735077905342587319658588918592911612387925934276961}{70957562206300184300931447586948489145172578877443749404428} a^{9} + \frac{200712439790508818369402554395364858090761854827789210437055}{1702981492951204423222354742086763739484141893058649985706272} a^{8} + \frac{649255246694641397048837961512878467347274918670332932763421}{1702981492951204423222354742086763739484141893058649985706272} a^{7} + \frac{208909686532326318030576166044384247715357745184380836756143}{1702981492951204423222354742086763739484141893058649985706272} a^{6} + \frac{107330488985101637116405414486484113546072442869032887134585}{851490746475602211611177371043381869742070946529324992853136} a^{5} + \frac{394166069784980651954353346305911929585216664572440695407681}{1702981492951204423222354742086763739484141893058649985706272} a^{4} + \frac{766549026272553252642102199566174326406599947853013435449567}{1702981492951204423222354742086763739484141893058649985706272} a^{3} + \frac{130473511139037816303907152615748101151013836167225459784795}{425745373237801105805588685521690934871035473264662496426568} a^{2} + \frac{14793037730875743728796796075718610174814352214470929739021}{212872686618900552902794342760845467435517736632331248213284} a - \frac{7895981942933166016555956057759579740875925120989571317184}{53218171654725138225698585690211366858879434158082812053321}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4810}$, which has order $153920$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-455}) \), 3.3.169.1, 3.3.8281.1, 3.3.8281.2, \(\Q(\zeta_{7})^+\), 6.0.15919187375.2, 6.0.780040181375.1, 6.0.780040181375.2, 6.0.4615622375.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |