Normalized defining polynomial
\( x^{18} - 7 x^{17} + 24 x^{16} - 50 x^{15} + 241 x^{14} - 1033 x^{13} + 4672 x^{12} - 14541 x^{11} + 52234 x^{10} - 139961 x^{9} + 445351 x^{8} - 952935 x^{7} + 2517118 x^{6} - 4112929 x^{5} + 9673910 x^{4} - 11979744 x^{3} + 23891131 x^{2} - 16951280 x + 24056839 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-474295404311594698259070089068359375=-\,3^{9}\cdot 5^{9}\cdot 37^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(555=3\cdot 5\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{555}(256,·)$, $\chi_{555}(1,·)$, $\chi_{555}(194,·)$, $\chi_{555}(451,·)$, $\chi_{555}(329,·)$, $\chi_{555}(269,·)$, $\chi_{555}(271,·)$, $\chi_{555}(16,·)$, $\chi_{555}(211,·)$, $\chi_{555}(404,·)$, $\chi_{555}(149,·)$, $\chi_{555}(419,·)$, $\chi_{555}(164,·)$, $\chi_{555}(359,·)$, $\chi_{555}(44,·)$, $\chi_{555}(46,·)$, $\chi_{555}(181,·)$, $\chi_{555}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{31} a^{15} - \frac{11}{31} a^{13} - \frac{15}{31} a^{12} - \frac{6}{31} a^{11} - \frac{15}{31} a^{10} - \frac{3}{31} a^{9} - \frac{15}{31} a^{8} - \frac{7}{31} a^{7} - \frac{11}{31} a^{6} + \frac{12}{31} a^{5} + \frac{2}{31} a^{3} - \frac{10}{31} a^{2} + \frac{3}{31} a - \frac{5}{31}$, $\frac{1}{1333} a^{16} + \frac{11}{1333} a^{15} + \frac{578}{1333} a^{14} + \frac{639}{1333} a^{13} + \frac{232}{1333} a^{12} + \frac{663}{1333} a^{11} - \frac{261}{1333} a^{10} - \frac{17}{1333} a^{9} - \frac{482}{1333} a^{8} - \frac{491}{1333} a^{7} + \frac{170}{1333} a^{6} - \frac{178}{1333} a^{5} - \frac{277}{1333} a^{4} - \frac{608}{1333} a^{3} + \frac{79}{1333} a^{2} + \frac{245}{1333} a + \frac{658}{1333}$, $\frac{1}{64971458031073856764107624306495112618547511907147} a^{17} + \frac{10855352648754751264624883363113784346061469617}{64971458031073856764107624306495112618547511907147} a^{16} + \frac{678505292192008662079851671582867901810651054038}{64971458031073856764107624306495112618547511907147} a^{15} - \frac{948952357634944857828333237457170904056609310187}{64971458031073856764107624306495112618547511907147} a^{14} + \frac{31979620323865523677828331676428956663951243843848}{64971458031073856764107624306495112618547511907147} a^{13} - \frac{7594911627955378585121678144157143899281454035796}{64971458031073856764107624306495112618547511907147} a^{12} + \frac{25641147891166306433759233013701402992777340551873}{64971458031073856764107624306495112618547511907147} a^{11} + \frac{3788672312029927438809268487024063407226028078035}{64971458031073856764107624306495112618547511907147} a^{10} - \frac{14048572067672628311839041052333127720775297105916}{64971458031073856764107624306495112618547511907147} a^{9} + \frac{497859119894942174811061351097876181453916323154}{2095853484873350218197020138919197181243468126037} a^{8} - \frac{3993868551973815096516418981935365286720872698003}{64971458031073856764107624306495112618547511907147} a^{7} - \frac{32322532740403421661562564663323247356246910132330}{64971458031073856764107624306495112618547511907147} a^{6} - \frac{24481921868684232512978419506737579246751386669431}{64971458031073856764107624306495112618547511907147} a^{5} + \frac{21493951171703839757412446415840764842601434042180}{64971458031073856764107624306495112618547511907147} a^{4} - \frac{18981304189441199146027291165647090398163590979468}{64971458031073856764107624306495112618547511907147} a^{3} + \frac{15819099291892933330882451732303331230076482609344}{64971458031073856764107624306495112618547511907147} a^{2} - \frac{19088097017670198806704950873161495470661807024764}{64971458031073856764107624306495112618547511907147} a - \frac{10035722839041652311612604191363721359007297505219}{64971458031073856764107624306495112618547511907147}$
Class group and class number
$C_{37058}$, which has order $37058$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.310213 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.1369.1, 6.0.6325293375.1, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | R | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | R | $18$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 37 | Data not computed | ||||||