Normalized defining polynomial
\( x^{18} - 4 x^{17} + 24 x^{16} - 72 x^{15} + 286 x^{14} - 148 x^{13} + 152 x^{12} + 2480 x^{11} + 11008 x^{10} - 22504 x^{9} + 85248 x^{8} + 267320 x^{7} - 606644 x^{6} + 1081216 x^{5} + 4450248 x^{4} - 3234976 x^{3} - 1479936 x^{2} + 23748256 x + 21791344 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4682608319761747086843545735135232=-\,2^{34}\cdot 3^{13}\cdot 11^{5}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{12} a^{14} + \frac{1}{12} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{24} a^{15} - \frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a$, $\frac{1}{24} a^{16} + \frac{1}{12} a^{11} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3050445194445031659052469300821063936423081791420744} a^{17} - \frac{9897234882245929453500368073838193519587929659931}{508407532407505276508744883470177322737180298570124} a^{16} - \frac{7876525132482093840638902234314785601607480099371}{508407532407505276508744883470177322737180298570124} a^{15} - \frac{510245088309666168423262141619751608346259967497}{762611298611257914763117325205265984105770447855186} a^{14} - \frac{21127861326666610098815674278232059956551719948707}{508407532407505276508744883470177322737180298570124} a^{13} - \frac{95095704633644678044824870523036395584772997112203}{1525222597222515829526234650410531968211540895710372} a^{12} + \frac{48795738159671845619100856369097776763899785587393}{508407532407505276508744883470177322737180298570124} a^{11} - \frac{32956011847554292040866500902855724558476136217079}{762611298611257914763117325205265984105770447855186} a^{10} + \frac{2575600960009688395404605113596751916834876753114}{127101883101876319127186220867544330684295074642531} a^{9} - \frac{24654263468507985736682536890571992401054253019043}{762611298611257914763117325205265984105770447855186} a^{8} - \frac{41845316282964336268647774932964248029739536136779}{254203766203752638254372441735088661368590149285062} a^{7} + \frac{11463351138234506038088105719653071738656170610792}{54472235615089851054508380371804713150412174846799} a^{6} - \frac{10532508491876280434708254036720771796387589999067}{127101883101876319127186220867544330684295074642531} a^{5} - \frac{36792541653711732863400138881998546028134226847469}{127101883101876319127186220867544330684295074642531} a^{4} + \frac{70073473766433626213968979421316365526929836344022}{381305649305628957381558662602632992052885223927593} a^{3} + \frac{179445455593432480449924390968553852182953647676789}{381305649305628957381558662602632992052885223927593} a^{2} - \frac{84781024563720764444827308167811317284752402956420}{381305649305628957381558662602632992052885223927593} a + \frac{114924575071559495046345216180209263678459923993922}{381305649305628957381558662602632992052885223927593}$
Class group and class number
$C_{2}\times C_{2}\times C_{116}$, which has order $464$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29009088.4012 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 70 conjugacy class representatives for t18n487 are not computed |
| Character table for t18n487 is not computed |
Intermediate fields
| 3.3.404.1, 6.0.344712192.1, 9.9.372251938443264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.6 | $x^{6} + 2 x^{5} + 4 x^{3} + 6$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ |
| 2.12.24.403 | $x^{12} - 2 x^{10} + 2 x^{6} + 4 x^{3} + 4 x + 2$ | $12$ | $1$ | $24$ | 12T101 | $[4/3, 4/3, 2, 8/3, 8/3]_{3}^{2}$ | |
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.6.9.12 | $x^{6} + 3 x^{4} + 3$ | $6$ | $1$ | $9$ | $D_{6}$ | $[2]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.5.2 | $x^{6} + 33$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 101 | Data not computed | ||||||