Normalized defining polynomial
\( x^{18} - 2 x^{17} + 15 x^{16} - 40 x^{15} + 112 x^{14} - 334 x^{13} + 696 x^{12} - 1860 x^{11} + 4216 x^{10} - 9634 x^{9} + 23952 x^{8} - 51770 x^{7} + 103815 x^{6} - 178442 x^{5} + 240121 x^{4} - 240390 x^{3} + 158800 x^{2} - 59000 x + 10000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4677959640662633651334007427=-\,1187^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1187$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{112} a^{12} - \frac{3}{56} a^{11} + \frac{5}{112} a^{9} + \frac{1}{28} a^{8} - \frac{5}{28} a^{7} - \frac{3}{16} a^{6} + \frac{13}{56} a^{5} - \frac{1}{4} a^{4} + \frac{55}{112} a^{3} - \frac{5}{14} a^{2} - \frac{1}{7} a - \frac{3}{14}$, $\frac{1}{224} a^{13} - \frac{1}{224} a^{12} + \frac{3}{56} a^{11} - \frac{9}{224} a^{10} + \frac{1}{224} a^{9} + \frac{47}{224} a^{7} - \frac{23}{224} a^{6} + \frac{1}{56} a^{5} - \frac{15}{224} a^{4} + \frac{95}{224} a^{3} - \frac{3}{14} a^{2} + \frac{1}{28} a - \frac{1}{28}$, $\frac{1}{1120} a^{14} + \frac{1}{560} a^{13} + \frac{3}{1120} a^{12} + \frac{1}{160} a^{11} + \frac{3}{112} a^{10} - \frac{139}{1120} a^{9} + \frac{27}{224} a^{8} - \frac{3}{16} a^{7} + \frac{61}{1120} a^{6} - \frac{43}{224} a^{5} + \frac{81}{560} a^{4} + \frac{243}{1120} a^{3} + \frac{69}{140} a^{2} + \frac{3}{10} a + \frac{3}{28}$, $\frac{1}{1120} a^{15} - \frac{1}{1120} a^{13} + \frac{1}{1120} a^{12} + \frac{1}{70} a^{11} - \frac{59}{1120} a^{10} - \frac{1}{160} a^{9} + \frac{1}{14} a^{8} - \frac{79}{1120} a^{7} + \frac{223}{1120} a^{6} + \frac{1}{35} a^{5} - \frac{221}{1120} a^{4} - \frac{37}{560} a^{3} + \frac{11}{35} a^{2} + \frac{1}{140} a - \frac{3}{14}$, $\frac{1}{11200} a^{16} + \frac{3}{11200} a^{15} - \frac{1}{400} a^{12} + \frac{1}{700} a^{11} + \frac{9}{800} a^{10} - \frac{61}{1120} a^{9} - \frac{23}{1400} a^{8} + \frac{237}{1400} a^{7} + \frac{313}{2800} a^{6} - \frac{17}{140} a^{5} - \frac{339}{2240} a^{4} + \frac{2943}{11200} a^{3} - \frac{353}{1400} a^{2} - \frac{61}{280} a + \frac{3}{56}$, $\frac{1}{42926107452393032000} a^{17} - \frac{7046178958823}{670720428943641125} a^{16} - \frac{289440839551487}{1226460212925515200} a^{15} + \frac{19135095648237}{153307526615689400} a^{14} + \frac{6781068782503231}{21463053726196516000} a^{13} - \frac{47348514570434337}{21463053726196516000} a^{12} + \frac{473148546702926863}{21463053726196516000} a^{11} + \frac{138856906797618717}{4292610745239303200} a^{10} - \frac{1131545442133942771}{10731526863098258000} a^{9} - \frac{347283275889660513}{5365763431549129000} a^{8} + \frac{2169303646842427041}{21463053726196516000} a^{7} + \frac{953999168937164689}{4292610745239303200} a^{6} - \frac{441889536179557667}{8585221490478606400} a^{5} + \frac{4774034922697355279}{21463053726196516000} a^{4} + \frac{16957569833610007961}{42926107452393032000} a^{3} - \frac{25446175701335371}{268288171577456450} a^{2} - \frac{8226196827223184}{26828817157745645} a + \frac{7972255319240017}{42926107452393032}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22636075.4911 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-1187}) \), 3.1.1187.1 x3, 6.0.1672446203.1, 9.1.1985193642961.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1187 | Data not computed | ||||||