Normalized defining polynomial
\( x^{18} - 3 x^{17} + 165 x^{16} - 490 x^{15} + 10839 x^{14} - 30510 x^{13} + 345457 x^{12} - 776070 x^{11} + 5556303 x^{10} - 6413124 x^{9} + 64492053 x^{8} - 64188012 x^{7} + 669977697 x^{6} - 651424590 x^{5} + 5007118512 x^{4} - 3879890761 x^{3} + 19161182850 x^{2} - 7873833456 x + 31296928456 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4664905028044379350971453203047862914143=-\,3^{24}\cdot 13^{15}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $159.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2223=3^{2}\cdot 13\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2223}(1,·)$, $\chi_{2223}(322,·)$, $\chi_{2223}(1291,·)$, $\chi_{2223}(1483,·)$, $\chi_{2223}(1804,·)$, $\chi_{2223}(1426,·)$, $\chi_{2223}(493,·)$, $\chi_{2223}(913,·)$, $\chi_{2223}(1234,·)$, $\chi_{2223}(550,·)$, $\chi_{2223}(742,·)$, $\chi_{2223}(1063,·)$, $\chi_{2223}(172,·)$, $\chi_{2223}(685,·)$, $\chi_{2223}(2032,·)$, $\chi_{2223}(1654,·)$, $\chi_{2223}(1975,·)$, $\chi_{2223}(2167,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1667452} a^{15} - \frac{72279}{833726} a^{14} - \frac{362277}{1667452} a^{13} + \frac{156511}{833726} a^{12} - \frac{369109}{1667452} a^{11} - \frac{116957}{833726} a^{10} - \frac{167775}{1667452} a^{9} - \frac{99013}{416863} a^{8} + \frac{134065}{1667452} a^{7} + \frac{74590}{416863} a^{6} + \frac{580541}{1667452} a^{5} - \frac{9897}{416863} a^{4} - \frac{417259}{1667452} a^{3} + \frac{45491}{833726} a^{2} + \frac{175065}{833726} a + \frac{106560}{416863}$, $\frac{1}{1667452} a^{16} - \frac{35451}{1667452} a^{14} - \frac{15145}{416863} a^{13} - \frac{179757}{1667452} a^{12} - \frac{131231}{833726} a^{11} - \frac{48679}{1667452} a^{10} + \frac{77141}{416863} a^{9} - \frac{386531}{1667452} a^{8} - \frac{163983}{833726} a^{7} - \frac{241737}{1667452} a^{6} - \frac{54786}{416863} a^{5} - \frac{484099}{1667452} a^{4} - \frac{230309}{833726} a^{3} - \frac{167645}{833726} a^{2} - \frac{76477}{833726} a + \frac{178904}{416863}$, $\frac{1}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{17} + \frac{3325209192942159219658822197861733529617729993438553847312015685517}{91989965575397296315775376790940665869019147277478692890679566731790782254} a^{16} + \frac{25241111544880706897728957616029866872645512221798276970138786710315}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{15} - \frac{15907613253199310570293304803202209565211884840202684757302202216888176047}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{14} + \frac{38611948074195100000755428395066121829178089128152796234928094746318415259}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{13} - \frac{20782178134655124185440353183662536195597071030420111039914240790844773197}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{12} - \frac{41824048172935561693717333285893256058932012106938060650621767453029337377}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{11} + \frac{27662647186099629783084257535236324538003444049073990743098713710078736987}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{10} + \frac{2510985234923328903663216869834632774640232426581595787203450394942411373}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{9} - \frac{45590743895548192005918384191730557801024876532234334296613965381792685243}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{8} - \frac{39694645301512583037395901456149782395646772279851651858776654652653471655}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{7} + \frac{36445498743206359923329370506678355062479801307151239639466459012017927347}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{6} - \frac{89178816503605207235154507585248083690045709129836932748883792061626502513}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{5} - \frac{4631257443009712111373948106767271714594983217556486327457404221147904261}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{4} - \frac{15974622563713676438870331830090301188354550127627515133784726043834013081}{91989965575397296315775376790940665869019147277478692890679566731790782254} a^{3} + \frac{14759137034367689681339725622182579031419133052923597729011530006137483871}{183979931150794592631550753581881331738038294554957385781359133463581564508} a^{2} + \frac{13340047038964671611568485570006796499332777166700979105873592730767568239}{91989965575397296315775376790940665869019147277478692890679566731790782254} a - \frac{117860671594207035589130972051689180594018047450557257532321080573301607}{421972319153198606953098058674039751692748382006782994911374159320141203}$
Class group and class number
$C_{6}\times C_{108}\times C_{9828}$, which has order $6368544$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.1364448253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-247}) \), 3.3.169.1, 3.3.13689.1, \(\Q(\zeta_{9})^+\), 3.3.13689.2, 6.0.2546698687.1, 6.0.16708890085407.3, 6.0.98869172103.4, 6.0.16708890085407.4, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| $19$ | 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |