Normalized defining polynomial
\( x^{18} - 6 x^{17} + 171 x^{16} - 866 x^{15} + 12825 x^{14} - 53706 x^{13} + 534596 x^{12} - 1842426 x^{11} + 13567536 x^{10} - 37365600 x^{9} + 219817671 x^{8} - 463924236 x^{7} + 2271460011 x^{6} - 3413556846 x^{5} + 15903607875 x^{4} - 10762099726 x^{3} + 82917294006 x^{2} + 893627904 x + 191108188441 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-46572979962512449327252831469568000000000=-\,2^{27}\cdot 3^{27}\cdot 5^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $181.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4680=2^{3}\cdot 3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4680}(1,·)$, $\chi_{4680}(3721,·)$, $\chi_{4680}(4109,·)$, $\chi_{4680}(269,·)$, $\chi_{4680}(3149,·)$, $\chi_{4680}(1561,·)$, $\chi_{4680}(601,·)$, $\chi_{4680}(989,·)$, $\chi_{4680}(2401,·)$, $\chi_{4680}(1829,·)$, $\chi_{4680}(2161,·)$, $\chi_{4680}(29,·)$, $\chi_{4680}(3121,·)$, $\chi_{4680}(2549,·)$, $\chi_{4680}(841,·)$, $\chi_{4680}(3961,·)$, $\chi_{4680}(3389,·)$, $\chi_{4680}(1589,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{10} a^{6} - \frac{1}{5} a^{5} + \frac{3}{10} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{10}$, $\frac{1}{10} a^{7} - \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{2} - \frac{3}{10} a + \frac{1}{5}$, $\frac{1}{10} a^{8} + \frac{3}{10} a^{4} - \frac{1}{2} a^{2} + \frac{1}{10}$, $\frac{1}{10} a^{9} + \frac{3}{10} a^{5} - \frac{1}{2} a^{3} + \frac{1}{10} a$, $\frac{1}{10} a^{10} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{3}{10} a^{2} - \frac{2}{5} a - \frac{3}{10}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{10} a^{3} - \frac{1}{5} a^{2} - \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{100} a^{12} - \frac{1}{25} a^{11} + \frac{1}{100} a^{8} + \frac{1}{25} a^{6} + \frac{4}{25} a^{4} + \frac{1}{5} a^{3} + \frac{3}{10} a^{2} + \frac{4}{25} a + \frac{41}{100}$, $\frac{1}{100} a^{13} + \frac{1}{25} a^{11} + \frac{1}{100} a^{9} + \frac{1}{25} a^{8} + \frac{1}{25} a^{7} - \frac{1}{25} a^{6} + \frac{4}{25} a^{5} + \frac{1}{25} a^{4} + \frac{1}{10} a^{3} + \frac{9}{25} a^{2} + \frac{1}{4} a + \frac{6}{25}$, $\frac{1}{100} a^{14} - \frac{1}{25} a^{11} + \frac{1}{100} a^{10} + \frac{1}{25} a^{9} - \frac{1}{25} a^{7} + \frac{11}{25} a^{5} - \frac{17}{50} a^{4} + \frac{9}{25} a^{3} + \frac{9}{20} a^{2} - \frac{1}{5} a - \frac{11}{25}$, $\frac{1}{100} a^{15} - \frac{1}{20} a^{11} + \frac{1}{25} a^{10} - \frac{17}{50} a^{5} - \frac{2}{5} a^{4} - \frac{1}{4} a^{3} + \frac{3}{10} a + \frac{11}{25}$, $\frac{1}{212936601815125123779197172100} a^{16} + \frac{32172680781986759061837319}{53234150453781280944799293025} a^{15} - \frac{66994841979935273816962526}{53234150453781280944799293025} a^{14} + \frac{203150398116925898480255979}{42587320363025024755839434420} a^{13} - \frac{203604154701450479515025031}{212936601815125123779197172100} a^{12} + \frac{829322774068196786212317456}{53234150453781280944799293025} a^{11} - \frac{659895007024284922037892793}{21293660181512512377919717210} a^{10} - \frac{3545825129305360806493607611}{212936601815125123779197172100} a^{9} - \frac{1219430668495371012050674069}{53234150453781280944799293025} a^{8} + \frac{3424633783529262960498610843}{106468300907562561889598586050} a^{7} + \frac{2539584450781823423855193393}{53234150453781280944799293025} a^{6} - \frac{833371921598131620102843500}{2129366018151251237791971721} a^{5} + \frac{6281470316146720816278919143}{42587320363025024755839434420} a^{4} + \frac{13016933896479791570555323454}{53234150453781280944799293025} a^{3} + \frac{3772457586695317527007522111}{21293660181512512377919717210} a^{2} - \frac{30478601674449670769398355457}{212936601815125123779197172100} a - \frac{14248858287432120603714906184}{53234150453781280944799293025}$, $\frac{1}{7347895530831347410296167439674761467187204900} a^{17} + \frac{9343329346114819}{7347895530831347410296167439674761467187204900} a^{16} + \frac{6375645133538689412883881919588567505682943}{1836973882707836852574041859918690366796801225} a^{15} - \frac{32306141436641114989670756659527345339937897}{7347895530831347410296167439674761467187204900} a^{14} - \frac{9589822282705205587070449157383757108606611}{3673947765415673705148083719837380733593602450} a^{13} + \frac{20853976189193879658423523257823362310080559}{7347895530831347410296167439674761467187204900} a^{12} - \frac{132077951030568534286980373424999760802704127}{3673947765415673705148083719837380733593602450} a^{11} - \frac{216840725273047844323151066349827645657700889}{7347895530831347410296167439674761467187204900} a^{10} - \frac{18232916911660479890097928443482123121983271}{1469579106166269482059233487934952293437440980} a^{9} - \frac{17161659770581840350680118178023381628317887}{1836973882707836852574041859918690366796801225} a^{8} + \frac{130718115711837990325130504881299112497052523}{3673947765415673705148083719837380733593602450} a^{7} + \frac{6613479210824886554216003768654802635849441}{3673947765415673705148083719837380733593602450} a^{6} + \frac{552076988452565197223392627425299857704181517}{7347895530831347410296167439674761467187204900} a^{5} - \frac{635853018812334356180700334476016989121200827}{1469579106166269482059233487934952293437440980} a^{4} + \frac{905063579589941270149643590605021652790636092}{1836973882707836852574041859918690366796801225} a^{3} + \frac{2583457025975200881255946352620884024034047047}{7347895530831347410296167439674761467187204900} a^{2} + \frac{1370473661380821880681213598742683158821191391}{7347895530831347410296167439674761467187204900} a + \frac{64713826190793263221118074288895444760695087}{1836973882707836852574041859918690366796801225}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{90}\times C_{8190}$, which has order $11793600$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.1364448253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-30}) \), 3.3.13689.2, 3.3.13689.1, 3.3.169.1, \(\Q(\zeta_{9})^+\), 6.0.35978634432000.4, 6.0.35978634432000.3, 6.0.49353408000.11, 6.0.1259712000.1, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |