Properties

Label 18.0.464...000.1
Degree $18$
Signature $[0, 9]$
Discriminant $-4.642\times 10^{30}$
Root discriminant \(50.55\)
Ramified primes $2,5,19$
Class number $14$ (GRH)
Class group [14] (GRH)
Galois group $S_3 \times C_6$ (as 18T6)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 2*x^17 - 2*x^16 - 26*x^15 + 42*x^14 + 90*x^13 + 431*x^12 - 978*x^11 - 1417*x^10 - 232*x^9 + 7265*x^8 + 2468*x^7 - 13003*x^6 - 10038*x^5 + 39442*x^4 - 58082*x^3 + 97785*x^2 - 127756*x + 68921)
 
gp: K = bnfinit(y^18 - 2*y^17 - 2*y^16 - 26*y^15 + 42*y^14 + 90*y^13 + 431*y^12 - 978*y^11 - 1417*y^10 - 232*y^9 + 7265*y^8 + 2468*y^7 - 13003*y^6 - 10038*y^5 + 39442*y^4 - 58082*y^3 + 97785*y^2 - 127756*y + 68921, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 2*x^17 - 2*x^16 - 26*x^15 + 42*x^14 + 90*x^13 + 431*x^12 - 978*x^11 - 1417*x^10 - 232*x^9 + 7265*x^8 + 2468*x^7 - 13003*x^6 - 10038*x^5 + 39442*x^4 - 58082*x^3 + 97785*x^2 - 127756*x + 68921);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 2*x^17 - 2*x^16 - 26*x^15 + 42*x^14 + 90*x^13 + 431*x^12 - 978*x^11 - 1417*x^10 - 232*x^9 + 7265*x^8 + 2468*x^7 - 13003*x^6 - 10038*x^5 + 39442*x^4 - 58082*x^3 + 97785*x^2 - 127756*x + 68921)
 

\( x^{18} - 2 x^{17} - 2 x^{16} - 26 x^{15} + 42 x^{14} + 90 x^{13} + 431 x^{12} - 978 x^{11} + \cdots + 68921 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-4641657809149437673472000000000\) \(\medspace = -\,2^{30}\cdot 5^{9}\cdot 19^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(50.55\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}5^{1/2}19^{2/3}\approx 63.686501757102$
Ramified primes:   \(2\), \(5\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-5}) \)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{41}a^{16}-\frac{2}{41}a^{15}-\frac{2}{41}a^{14}+\frac{15}{41}a^{13}+\frac{1}{41}a^{12}+\frac{8}{41}a^{11}-\frac{20}{41}a^{10}+\frac{6}{41}a^{9}+\frac{18}{41}a^{8}+\frac{14}{41}a^{7}+\frac{8}{41}a^{6}+\frac{8}{41}a^{5}-\frac{6}{41}a^{4}+\frac{7}{41}a^{3}+\frac{15}{41}a$, $\frac{1}{89\!\cdots\!23}a^{17}+\frac{83\!\cdots\!10}{89\!\cdots\!23}a^{16}+\frac{19\!\cdots\!43}{89\!\cdots\!23}a^{15}-\frac{38\!\cdots\!28}{89\!\cdots\!23}a^{14}-\frac{12\!\cdots\!74}{89\!\cdots\!23}a^{13}-\frac{19\!\cdots\!31}{89\!\cdots\!23}a^{12}+\frac{34\!\cdots\!46}{89\!\cdots\!23}a^{11}+\frac{19\!\cdots\!08}{89\!\cdots\!23}a^{10}-\frac{36\!\cdots\!03}{89\!\cdots\!23}a^{9}+\frac{36\!\cdots\!51}{89\!\cdots\!23}a^{8}+\frac{23\!\cdots\!59}{89\!\cdots\!23}a^{7}-\frac{29\!\cdots\!54}{89\!\cdots\!23}a^{6}-\frac{54\!\cdots\!10}{19\!\cdots\!69}a^{5}+\frac{53\!\cdots\!50}{89\!\cdots\!23}a^{4}-\frac{58\!\cdots\!65}{21\!\cdots\!03}a^{3}+\frac{36\!\cdots\!27}{89\!\cdots\!23}a^{2}+\frac{71\!\cdots\!77}{21\!\cdots\!03}a+\frac{10\!\cdots\!10}{53\!\cdots\!83}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{14}$, which has order $14$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{24\!\cdots\!71}{89\!\cdots\!23}a^{17}-\frac{18\!\cdots\!96}{89\!\cdots\!23}a^{16}-\frac{74\!\cdots\!24}{89\!\cdots\!23}a^{15}-\frac{73\!\cdots\!03}{89\!\cdots\!23}a^{14}+\frac{12\!\cdots\!48}{89\!\cdots\!23}a^{13}+\frac{24\!\cdots\!29}{89\!\cdots\!23}a^{12}+\frac{13\!\cdots\!42}{89\!\cdots\!23}a^{11}-\frac{71\!\cdots\!94}{89\!\cdots\!23}a^{10}-\frac{44\!\cdots\!60}{89\!\cdots\!23}a^{9}-\frac{61\!\cdots\!32}{89\!\cdots\!23}a^{8}+\frac{10\!\cdots\!46}{89\!\cdots\!23}a^{7}+\frac{19\!\cdots\!77}{89\!\cdots\!23}a^{6}-\frac{17\!\cdots\!22}{19\!\cdots\!69}a^{5}-\frac{35\!\cdots\!69}{89\!\cdots\!23}a^{4}+\frac{13\!\cdots\!95}{21\!\cdots\!03}a^{3}-\frac{76\!\cdots\!34}{89\!\cdots\!23}a^{2}+\frac{35\!\cdots\!88}{21\!\cdots\!03}a-\frac{79\!\cdots\!28}{53\!\cdots\!83}$, $\frac{26\!\cdots\!58}{89\!\cdots\!23}a^{17}-\frac{19\!\cdots\!58}{89\!\cdots\!23}a^{16}-\frac{62\!\cdots\!33}{89\!\cdots\!23}a^{15}-\frac{75\!\cdots\!69}{89\!\cdots\!23}a^{14}+\frac{71\!\cdots\!41}{89\!\cdots\!23}a^{13}+\frac{19\!\cdots\!31}{89\!\cdots\!23}a^{12}+\frac{13\!\cdots\!43}{89\!\cdots\!23}a^{11}-\frac{64\!\cdots\!15}{89\!\cdots\!23}a^{10}-\frac{34\!\cdots\!35}{89\!\cdots\!23}a^{9}-\frac{49\!\cdots\!53}{89\!\cdots\!23}a^{8}+\frac{85\!\cdots\!89}{89\!\cdots\!23}a^{7}+\frac{99\!\cdots\!39}{89\!\cdots\!23}a^{6}-\frac{39\!\cdots\!03}{19\!\cdots\!69}a^{5}-\frac{22\!\cdots\!27}{89\!\cdots\!23}a^{4}+\frac{22\!\cdots\!09}{21\!\cdots\!03}a^{3}-\frac{56\!\cdots\!22}{89\!\cdots\!23}a^{2}+\frac{41\!\cdots\!36}{21\!\cdots\!03}a-\frac{96\!\cdots\!43}{53\!\cdots\!83}$, $\frac{73\!\cdots\!88}{89\!\cdots\!23}a^{17}-\frac{41\!\cdots\!16}{89\!\cdots\!23}a^{16}-\frac{21\!\cdots\!77}{89\!\cdots\!23}a^{15}-\frac{22\!\cdots\!78}{89\!\cdots\!23}a^{14}-\frac{11\!\cdots\!03}{89\!\cdots\!23}a^{13}+\frac{69\!\cdots\!00}{89\!\cdots\!23}a^{12}+\frac{43\!\cdots\!89}{89\!\cdots\!23}a^{11}-\frac{10\!\cdots\!36}{89\!\cdots\!23}a^{10}-\frac{13\!\cdots\!89}{89\!\cdots\!23}a^{9}-\frac{23\!\cdots\!26}{89\!\cdots\!23}a^{8}+\frac{23\!\cdots\!57}{89\!\cdots\!23}a^{7}+\frac{65\!\cdots\!39}{89\!\cdots\!23}a^{6}+\frac{55\!\cdots\!51}{19\!\cdots\!69}a^{5}-\frac{10\!\cdots\!93}{89\!\cdots\!23}a^{4}+\frac{29\!\cdots\!35}{21\!\cdots\!03}a^{3}-\frac{23\!\cdots\!35}{89\!\cdots\!23}a^{2}+\frac{93\!\cdots\!48}{21\!\cdots\!03}a-\frac{23\!\cdots\!60}{53\!\cdots\!83}$, $\frac{75\!\cdots\!06}{89\!\cdots\!23}a^{17}+\frac{22\!\cdots\!69}{89\!\cdots\!23}a^{16}-\frac{38\!\cdots\!92}{89\!\cdots\!23}a^{15}-\frac{26\!\cdots\!20}{89\!\cdots\!23}a^{14}-\frac{18\!\cdots\!59}{89\!\cdots\!23}a^{13}+\frac{11\!\cdots\!42}{89\!\cdots\!23}a^{12}+\frac{56\!\cdots\!07}{89\!\cdots\!23}a^{11}+\frac{23\!\cdots\!50}{89\!\cdots\!23}a^{10}-\frac{23\!\cdots\!87}{89\!\cdots\!23}a^{9}-\frac{46\!\cdots\!20}{89\!\cdots\!23}a^{8}+\frac{93\!\cdots\!21}{89\!\cdots\!23}a^{7}+\frac{16\!\cdots\!11}{89\!\cdots\!23}a^{6}+\frac{30\!\cdots\!71}{19\!\cdots\!69}a^{5}-\frac{84\!\cdots\!50}{89\!\cdots\!23}a^{4}-\frac{77\!\cdots\!23}{21\!\cdots\!03}a^{3}-\frac{40\!\cdots\!32}{89\!\cdots\!23}a^{2}-\frac{25\!\cdots\!39}{21\!\cdots\!03}a+\frac{44\!\cdots\!34}{53\!\cdots\!83}$, $\frac{59\!\cdots\!26}{89\!\cdots\!23}a^{17}+\frac{59\!\cdots\!59}{89\!\cdots\!23}a^{16}-\frac{52\!\cdots\!38}{89\!\cdots\!23}a^{15}-\frac{17\!\cdots\!84}{89\!\cdots\!23}a^{14}-\frac{29\!\cdots\!07}{89\!\cdots\!23}a^{13}-\frac{10\!\cdots\!26}{89\!\cdots\!23}a^{12}+\frac{29\!\cdots\!61}{89\!\cdots\!23}a^{11}+\frac{35\!\cdots\!45}{89\!\cdots\!23}a^{10}-\frac{27\!\cdots\!34}{89\!\cdots\!23}a^{9}-\frac{14\!\cdots\!21}{89\!\cdots\!23}a^{8}-\frac{26\!\cdots\!98}{89\!\cdots\!23}a^{7}+\frac{25\!\cdots\!08}{89\!\cdots\!23}a^{6}+\frac{24\!\cdots\!29}{19\!\cdots\!69}a^{5}-\frac{63\!\cdots\!68}{89\!\cdots\!23}a^{4}+\frac{19\!\cdots\!15}{21\!\cdots\!03}a^{3}-\frac{15\!\cdots\!96}{89\!\cdots\!23}a^{2}+\frac{54\!\cdots\!08}{21\!\cdots\!03}a-\frac{58\!\cdots\!57}{53\!\cdots\!83}$, $\frac{99\!\cdots\!76}{89\!\cdots\!23}a^{17}-\frac{14\!\cdots\!12}{89\!\cdots\!23}a^{16}-\frac{31\!\cdots\!42}{89\!\cdots\!23}a^{15}-\frac{27\!\cdots\!58}{89\!\cdots\!23}a^{14}+\frac{28\!\cdots\!89}{89\!\cdots\!23}a^{13}+\frac{11\!\cdots\!80}{89\!\cdots\!23}a^{12}+\frac{50\!\cdots\!39}{89\!\cdots\!23}a^{11}-\frac{77\!\cdots\!96}{89\!\cdots\!23}a^{10}-\frac{20\!\cdots\!87}{89\!\cdots\!23}a^{9}-\frac{14\!\cdots\!67}{89\!\cdots\!23}a^{8}+\frac{81\!\cdots\!91}{89\!\cdots\!23}a^{7}+\frac{83\!\cdots\!99}{89\!\cdots\!23}a^{6}-\frac{22\!\cdots\!93}{19\!\cdots\!69}a^{5}-\frac{27\!\cdots\!99}{89\!\cdots\!23}a^{4}+\frac{57\!\cdots\!24}{21\!\cdots\!03}a^{3}-\frac{27\!\cdots\!01}{89\!\cdots\!23}a^{2}+\frac{23\!\cdots\!19}{21\!\cdots\!03}a-\frac{42\!\cdots\!87}{53\!\cdots\!83}$, $\frac{67\!\cdots\!10}{89\!\cdots\!23}a^{17}-\frac{44\!\cdots\!76}{89\!\cdots\!23}a^{16}-\frac{19\!\cdots\!72}{89\!\cdots\!23}a^{15}-\frac{20\!\cdots\!21}{89\!\cdots\!23}a^{14}+\frac{11\!\cdots\!43}{89\!\cdots\!23}a^{13}+\frac{63\!\cdots\!72}{89\!\cdots\!23}a^{12}+\frac{37\!\cdots\!53}{89\!\cdots\!23}a^{11}-\frac{15\!\cdots\!27}{89\!\cdots\!23}a^{10}-\frac{11\!\cdots\!56}{89\!\cdots\!23}a^{9}-\frac{17\!\cdots\!57}{89\!\cdots\!23}a^{8}+\frac{25\!\cdots\!52}{89\!\cdots\!23}a^{7}+\frac{52\!\cdots\!49}{89\!\cdots\!23}a^{6}-\frac{37\!\cdots\!48}{19\!\cdots\!69}a^{5}-\frac{93\!\cdots\!63}{89\!\cdots\!23}a^{4}+\frac{34\!\cdots\!09}{21\!\cdots\!03}a^{3}-\frac{20\!\cdots\!03}{89\!\cdots\!23}a^{2}+\frac{94\!\cdots\!73}{21\!\cdots\!03}a-\frac{20\!\cdots\!43}{53\!\cdots\!83}$, $\frac{16\!\cdots\!83}{89\!\cdots\!23}a^{17}-\frac{90\!\cdots\!68}{89\!\cdots\!23}a^{16}-\frac{49\!\cdots\!31}{89\!\cdots\!23}a^{15}-\frac{51\!\cdots\!70}{89\!\cdots\!23}a^{14}-\frac{38\!\cdots\!51}{89\!\cdots\!23}a^{13}+\frac{15\!\cdots\!06}{89\!\cdots\!23}a^{12}+\frac{96\!\cdots\!53}{89\!\cdots\!23}a^{11}-\frac{23\!\cdots\!05}{89\!\cdots\!23}a^{10}-\frac{29\!\cdots\!67}{89\!\cdots\!23}a^{9}-\frac{48\!\cdots\!40}{89\!\cdots\!23}a^{8}+\frac{53\!\cdots\!79}{89\!\cdots\!23}a^{7}+\frac{13\!\cdots\!74}{89\!\cdots\!23}a^{6}-\frac{38\!\cdots\!53}{19\!\cdots\!69}a^{5}-\frac{21\!\cdots\!16}{89\!\cdots\!23}a^{4}+\frac{82\!\cdots\!02}{21\!\cdots\!03}a^{3}-\frac{48\!\cdots\!70}{89\!\cdots\!23}a^{2}+\frac{22\!\cdots\!34}{21\!\cdots\!03}a-\frac{44\!\cdots\!85}{53\!\cdots\!83}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3468123.856372189 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 3468123.856372189 \cdot 14}{2\cdot\sqrt{4641657809149437673472000000000}}\cr\approx \mathstrut & 0.171978791964417 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 2*x^17 - 2*x^16 - 26*x^15 + 42*x^14 + 90*x^13 + 431*x^12 - 978*x^11 - 1417*x^10 - 232*x^9 + 7265*x^8 + 2468*x^7 - 13003*x^6 - 10038*x^5 + 39442*x^4 - 58082*x^3 + 97785*x^2 - 127756*x + 68921)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 2*x^17 - 2*x^16 - 26*x^15 + 42*x^14 + 90*x^13 + 431*x^12 - 978*x^11 - 1417*x^10 - 232*x^9 + 7265*x^8 + 2468*x^7 - 13003*x^6 - 10038*x^5 + 39442*x^4 - 58082*x^3 + 97785*x^2 - 127756*x + 68921, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 2*x^17 - 2*x^16 - 26*x^15 + 42*x^14 + 90*x^13 + 431*x^12 - 978*x^11 - 1417*x^10 - 232*x^9 + 7265*x^8 + 2468*x^7 - 13003*x^6 - 10038*x^5 + 39442*x^4 - 58082*x^3 + 97785*x^2 - 127756*x + 68921);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 2*x^17 - 2*x^16 - 26*x^15 + 42*x^14 + 90*x^13 + 431*x^12 - 978*x^11 - 1417*x^10 - 232*x^9 + 7265*x^8 + 2468*x^7 - 13003*x^6 - 10038*x^5 + 39442*x^4 - 58082*x^3 + 97785*x^2 - 127756*x + 68921);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 18T6):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $S_3 \times C_6$
Character table for $S_3 \times C_6$

Intermediate fields

\(\Q(\sqrt{-5}) \), 3.3.361.1, 3.1.14440.1, 6.0.1042568000.1, 6.0.16681088000.5, 9.3.3010936384000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 12 sibling: 12.0.34162868224000000.1
Degree 18 sibling: 18.6.297066099785564011102208000000.1
Minimal sibling: 12.0.34162868224000000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }^{2}$ R ${\href{/padicField/7.3.0.1}{3} }^{6}$ ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.6.0.1}{6} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{3}$ R ${\href{/padicField/23.3.0.1}{3} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{9}$ ${\href{/padicField/37.6.0.1}{6} }^{3}$ ${\href{/padicField/41.3.0.1}{3} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ ${\href{/padicField/47.3.0.1}{3} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.6.5$x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$$2$$3$$6$$C_6$$[2]^{3}$
2.12.24.318$x^{12} + 10 x^{10} + 12 x^{9} + 110 x^{8} + 80 x^{7} + 752 x^{6} + 512 x^{5} + 1636 x^{4} + 1504 x^{3} + 1224 x^{2} + 1008 x - 648$$4$$3$$24$$C_6\times C_2$$[2, 3]^{3}$
\(5\) Copy content Toggle raw display 5.6.3.1$x^{6} + 60 x^{5} + 1221 x^{4} + 8846 x^{3} + 9864 x^{2} + 29208 x + 29309$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(19\) Copy content Toggle raw display 19.18.12.1$x^{18} + 1938 x^{16} + 165 x^{15} + 1564986 x^{14} + 217074 x^{13} + 673956770 x^{12} + 124220751 x^{11} + 163260541175 x^{10} + 40698676942 x^{9} + 21101810097561 x^{8} + 7872565858164 x^{7} + 1139107203476720 x^{6} + 760256762812749 x^{5} + 441034593923007 x^{4} + 19443033036221259 x^{3} + 22753074450170540 x^{2} + 9283251966890258 x + 2743830934025437$$3$$6$$12$$C_6 \times C_3$$[\ ]_{3}^{6}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.20.2t1.a.a$1$ $ 2^{2} \cdot 5 $ \(\Q(\sqrt{-5}) \) $C_2$ (as 2T1) $1$ $-1$
1.40.2t1.b.a$1$ $ 2^{3} \cdot 5 $ \(\Q(\sqrt{-10}) \) $C_2$ (as 2T1) $1$ $-1$
1.8.2t1.a.a$1$ $ 2^{3}$ \(\Q(\sqrt{2}) \) $C_2$ (as 2T1) $1$ $1$
* 1.19.3t1.a.a$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
* 1.19.3t1.a.b$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
1.760.6t1.b.a$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.8340544000.3 $C_6$ (as 6T1) $0$ $-1$
1.152.6t1.b.a$1$ $ 2^{3} \cdot 19 $ 6.6.66724352.1 $C_6$ (as 6T1) $0$ $1$
1.760.6t1.b.b$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.8340544000.3 $C_6$ (as 6T1) $0$ $-1$
* 1.380.6t1.b.a$1$ $ 2^{2} \cdot 5 \cdot 19 $ 6.0.1042568000.1 $C_6$ (as 6T1) $0$ $-1$
* 1.380.6t1.b.b$1$ $ 2^{2} \cdot 5 \cdot 19 $ 6.0.1042568000.1 $C_6$ (as 6T1) $0$ $-1$
1.152.6t1.b.b$1$ $ 2^{3} \cdot 19 $ 6.6.66724352.1 $C_6$ (as 6T1) $0$ $1$
* 2.14440.3t2.a.a$2$ $ 2^{3} \cdot 5 \cdot 19^{2}$ 3.1.14440.1 $S_3$ (as 3T2) $1$ $0$
* 2.57760.6t3.d.a$2$ $ 2^{5} \cdot 5 \cdot 19^{2}$ 6.2.6672435200.7 $D_{6}$ (as 6T3) $1$ $0$
* 2.3040.12t18.d.a$2$ $ 2^{5} \cdot 5 \cdot 19 $ 18.0.4641657809149437673472000000000.1 $S_3 \times C_6$ (as 18T6) $0$ $0$
* 2.3040.12t18.d.b$2$ $ 2^{5} \cdot 5 \cdot 19 $ 18.0.4641657809149437673472000000000.1 $S_3 \times C_6$ (as 18T6) $0$ $0$
* 2.760.6t5.a.a$2$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.23104000.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.760.6t5.a.b$2$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.23104000.1 $S_3\times C_3$ (as 6T5) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.