Normalized defining polynomial
\( x^{18} - 6 x^{17} + 12 x^{16} - 102 x^{15} + 597 x^{14} - 264 x^{13} + 11127 x^{12} + 2220 x^{11} + 139035 x^{10} + 135622 x^{9} + 1595346 x^{8} + 2445570 x^{7} + 13116918 x^{6} + 19084950 x^{5} + 64200627 x^{4} + 70378146 x^{3} + 164145177 x^{2} + 100403604 x + 163257381 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4575727330315213559892705312768000000000=-\,2^{24}\cdot 3^{30}\cdot 5^{9}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $159.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{8} - \frac{1}{2} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{2} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{14} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{15} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{6666} a^{16} - \frac{307}{6666} a^{15} + \frac{119}{3333} a^{14} - \frac{461}{6666} a^{13} + \frac{161}{3333} a^{12} + \frac{91}{2222} a^{11} + \frac{11}{202} a^{10} - \frac{49}{606} a^{9} - \frac{1523}{6666} a^{8} + \frac{433}{2222} a^{7} + \frac{2393}{6666} a^{6} - \frac{1867}{6666} a^{5} - \frac{342}{1111} a^{4} - \frac{985}{2222} a^{3} - \frac{402}{1111} a^{2} - \frac{50}{101} a + \frac{189}{1111}$, $\frac{1}{4566075907205809600656647616732509179345855933746} a^{17} + \frac{113135895298003483704323973666459318780559225}{2283037953602904800328323808366254589672927966873} a^{16} - \frac{198787211098916209446614610548350134326688182407}{4566075907205809600656647616732509179345855933746} a^{15} - \frac{45910100263288273034087838957556583359590097069}{1522025302401936533552215872244169726448618644582} a^{14} + \frac{9343119020733415038414973270604927413975186165}{4566075907205809600656647616732509179345855933746} a^{13} + \frac{71723548038169288244476566783089403356932349369}{1522025302401936533552215872244169726448618644582} a^{12} + \frac{702657083751505848856546846775935670658468199}{138365936581994230322928715658560884222601694962} a^{11} + \frac{11362128248336926739155319030905184063606351837}{415097809745982690968786146975682652667805084886} a^{10} - \frac{319809380051585013734547336888827352792660073313}{4566075907205809600656647616732509179345855933746} a^{9} - \frac{340745173198396407144526129600050637108519699055}{761012651200968266776107936122084863224309322291} a^{8} - \frac{725596257498949868429766727313752815238165319966}{2283037953602904800328323808366254589672927966873} a^{7} + \frac{632577003452618501948747615984122114581421662573}{1522025302401936533552215872244169726448618644582} a^{6} - \frac{934779345813553570919324384362377319204376890189}{4566075907205809600656647616732509179345855933746} a^{5} + \frac{9622806295191142847789970455116224051181086750}{761012651200968266776107936122084863224309322291} a^{4} + \frac{11728112181394046326828874981222529869853518433}{1522025302401936533552215872244169726448618644582} a^{3} - \frac{20032787749268814760551039195413949278689763920}{69182968290997115161464357829280442111300847481} a^{2} + \frac{27790432496588853718925250601534318949426583941}{1522025302401936533552215872244169726448618644582} a + \frac{7745432617403879957475593850509454582263363459}{69182968290997115161464357829280442111300847481}$
Class group and class number
$C_{6}\times C_{6}\times C_{6}\times C_{12}\times C_{756}$, which has order $1959552$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4695974.091249611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 3.3.3969.2, 3.3.756.1, 6.0.126023688000.1, 6.0.1143072000.8, 9.9.756284282720064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.15.14 | $x^{9} + 3 x^{7} + 3 x^{6} + 6 x^{3} + 15$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ |
| 3.9.15.14 | $x^{9} + 3 x^{7} + 3 x^{6} + 6 x^{3} + 15$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |