Normalized defining polynomial
\( x^{18} - 3 x^{17} + 21 x^{16} - 42 x^{15} + 189 x^{14} - 237 x^{13} + 963 x^{12} - 438 x^{11} + 3060 x^{10} + 1234 x^{9} + 7878 x^{8} + 8448 x^{7} + 16185 x^{6} + 21609 x^{5} + 25599 x^{4} + 24864 x^{3} + 19005 x^{2} + 10773 x + 2779 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-45738215713271605763192389632=-\,2^{18}\cdot 3^{31}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{5}{16} a^{2} - \frac{1}{4} a + \frac{5}{16}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{5}{16} a^{3} - \frac{1}{4} a^{2} + \frac{5}{16} a$, $\frac{1}{32} a^{16} - \frac{1}{32} a^{15} - \frac{1}{32} a^{13} + \frac{3}{32} a^{12} - \frac{1}{16} a^{11} + \frac{1}{16} a^{10} + \frac{1}{16} a^{8} - \frac{3}{16} a^{7} + \frac{1}{8} a^{6} + \frac{1}{16} a^{5} + \frac{5}{32} a^{4} - \frac{15}{32} a^{3} - \frac{1}{16} a^{2} + \frac{15}{32} a + \frac{9}{32}$, $\frac{1}{51928344662587647099349568} a^{17} + \frac{79853496839634999767961}{25964172331293823549674784} a^{16} + \frac{449652297059929739708735}{51928344662587647099349568} a^{15} - \frac{1370916030407153671297439}{51928344662587647099349568} a^{14} - \frac{764408652706996870070721}{25964172331293823549674784} a^{13} + \frac{5169680019038892210281193}{51928344662587647099349568} a^{12} - \frac{434188476279296489700327}{12982086165646911774837392} a^{11} - \frac{2658747435543822782741365}{25964172331293823549674784} a^{10} - \frac{2493515306641205598779475}{25964172331293823549674784} a^{9} - \frac{1857489278453344815236249}{12982086165646911774837392} a^{8} + \frac{987777772945211740310317}{25964172331293823549674784} a^{7} + \frac{1140351042730773709090177}{25964172331293823549674784} a^{6} + \frac{23397329887772947471784435}{51928344662587647099349568} a^{5} - \frac{304970219708642287967277}{1622760770705863971854674} a^{4} + \frac{991835891969724326162903}{51928344662587647099349568} a^{3} + \frac{7644952656320055694203291}{51928344662587647099349568} a^{2} + \frac{329067282236211059681635}{811380385352931985927337} a - \frac{1204261673993547533254091}{51928344662587647099349568}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{20216776176489}{31644527977671328} a^{17} + \frac{80572660509387}{31644527977671328} a^{16} - \frac{252878392018891}{15822263988835664} a^{15} + \frac{1336997463921951}{31644527977671328} a^{14} - \frac{5115633662243541}{31644527977671328} a^{13} + \frac{4777757749037495}{15822263988835664} a^{12} - \frac{14166216300123573}{15822263988835664} a^{11} + \frac{2126187456999285}{1977782998604458} a^{10} - \frac{45760823395852335}{15822263988835664} a^{9} + \frac{25335028679956983}{15822263988835664} a^{8} - \frac{6199096917359691}{988891499302229} a^{7} - \frac{8851738712061425}{15822263988835664} a^{6} - \frac{306864236180407605}{31644527977671328} a^{5} - \frac{220025757206466603}{31644527977671328} a^{4} - \frac{84933795684126571}{7911131994417832} a^{3} - \frac{277071506800580037}{31644527977671328} a^{2} - \frac{206087895111114219}{31644527977671328} a - \frac{19771420435579315}{7911131994417832} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118048197.30834381 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1512.1, 6.0.964467.3, 6.0.6858432.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |