Normalized defining polynomial
\( x^{18} - 3 x^{17} + 12 x^{16} - 35 x^{15} + 109 x^{14} - 232 x^{13} + 465 x^{12} - 905 x^{11} + 1933 x^{10} - 4064 x^{9} + 7485 x^{8} - 11437 x^{7} + 14084 x^{6} - 13785 x^{5} + 11517 x^{4} - 8290 x^{3} + 5868 x^{2} - 3024 x + 1728 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-45639710758676856201171875=-\,5^{12}\cdot 83^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} + \frac{1}{8} a^{5} + \frac{1}{16} a^{4} + \frac{1}{16} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{10} + \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{3}{16} a^{5} - \frac{1}{8} a^{4} + \frac{3}{16} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{3}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{8} - \frac{1}{16} a^{7} - \frac{1}{8} a^{6} - \frac{1}{16} a^{5} - \frac{3}{32} a^{4} - \frac{1}{16} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{96} a^{13} + \frac{1}{96} a^{12} + \frac{1}{48} a^{11} + \frac{1}{48} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{8} + \frac{1}{48} a^{7} - \frac{5}{32} a^{5} + \frac{5}{32} a^{4} + \frac{1}{16} a^{3} + \frac{5}{24} a^{2} + \frac{1}{6} a$, $\frac{1}{192} a^{14} - \frac{1}{192} a^{13} - \frac{1}{64} a^{12} + \frac{1}{48} a^{11} + \frac{5}{192} a^{10} - \frac{1}{64} a^{9} + \frac{23}{192} a^{8} - \frac{1}{12} a^{7} + \frac{5}{64} a^{6} + \frac{9}{64} a^{5} + \frac{13}{64} a^{4} + \frac{1}{96} a^{3} + \frac{7}{16} a^{2} - \frac{5}{12} a$, $\frac{1}{6720} a^{15} + \frac{1}{2240} a^{14} + \frac{1}{2240} a^{13} - \frac{1}{168} a^{12} + \frac{137}{6720} a^{11} - \frac{11}{6720} a^{10} - \frac{11}{1344} a^{9} + \frac{71}{840} a^{8} - \frac{71}{960} a^{7} + \frac{121}{2240} a^{6} - \frac{493}{2240} a^{5} + \frac{631}{3360} a^{4} - \frac{209}{840} a^{3} + \frac{3}{280} a^{2} + \frac{209}{420} a - \frac{8}{35}$, $\frac{1}{483840} a^{16} + \frac{1}{40320} a^{15} - \frac{61}{32256} a^{14} + \frac{583}{120960} a^{13} + \frac{3581}{241920} a^{12} + \frac{1381}{241920} a^{11} + \frac{7}{7680} a^{10} + \frac{313}{30240} a^{9} - \frac{4883}{48384} a^{8} + \frac{5707}{48384} a^{7} + \frac{1891}{161280} a^{6} + \frac{5921}{30240} a^{5} + \frac{73001}{483840} a^{4} + \frac{20149}{80640} a^{3} - \frac{7729}{40320} a^{2} + \frac{391}{864} a + \frac{523}{2520}$, $\frac{1}{90857894400} a^{17} + \frac{577}{3365107200} a^{16} + \frac{4567}{93187584} a^{15} + \frac{16898771}{18171578880} a^{14} + \frac{179468327}{45428947200} a^{13} - \frac{13184129}{1622462400} a^{12} - \frac{708165011}{30285964800} a^{11} - \frac{216776201}{90857894400} a^{10} - \frac{1093772767}{45428947200} a^{9} + \frac{734760157}{22714473600} a^{8} + \frac{370199833}{3365107200} a^{7} + \frac{184404301}{2595939840} a^{6} + \frac{711655613}{6989068800} a^{5} + \frac{628952839}{3365107200} a^{4} + \frac{255223639}{2163283200} a^{3} - \frac{8839308481}{22714473600} a^{2} - \frac{7420667}{29121120} a + \frac{1151393}{22534200}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 226753.492401 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-83}) \), 3.1.2075.2 x3, 3.1.2075.1 x3, 3.1.2075.3 x3, 3.1.83.1 x3, 6.0.357366875.3, 6.0.357366875.2, 6.0.357366875.1, 6.0.571787.1, 9.1.741536265625.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $83$ | 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |