# Properties

 Label 18.0.45583107465...0263.1 Degree $18$ Signature $[0, 9]$ Discriminant $-\,3^{9}\cdot 229\cdot 433^{3}\cdot 12457$ Root discriminant $10.88$ Ramified primes $3, 229, 433, 12457$ Class number $1$ Class group Trivial Galois group 18T951

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 0, -1, 2, -2, 9, -10, 18, -20, 23, -20, 22, -10, 15, -2, 6, 0, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 6*x^16 - 2*x^15 + 15*x^14 - 10*x^13 + 22*x^12 - 20*x^11 + 23*x^10 - 20*x^9 + 18*x^8 - 10*x^7 + 9*x^6 - 2*x^5 + 2*x^4 - x^3 - x + 1)

gp: K = bnfinit(x^18 + 6*x^16 - 2*x^15 + 15*x^14 - 10*x^13 + 22*x^12 - 20*x^11 + 23*x^10 - 20*x^9 + 18*x^8 - 10*x^7 + 9*x^6 - 2*x^5 + 2*x^4 - x^3 - x + 1, 1)

## Normalizeddefining polynomial

$$x^{18} + 6 x^{16} - 2 x^{15} + 15 x^{14} - 10 x^{13} + 22 x^{12} - 20 x^{11} + 23 x^{10} - 20 x^{9} + 18 x^{8} - 10 x^{7} + 9 x^{6} - 2 x^{5} + 2 x^{4} - x^{3} - x + 1$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

## Invariants

 Degree: $18$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[0, 9]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$-4558310746519570263=-\,3^{9}\cdot 229\cdot 433^{3}\cdot 12457$$ magma: Discriminant(Integers(K));  sage: K.disc()  gp: K.disc Root discriminant: $10.88$ magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $3, 229, 433, 12457$ magma: PrimeDivisors(Discriminant(Integers(K)));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ $|\Aut(K/\Q)|$: $1$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} - \frac{2}{13} a^{16} - \frac{3}{13} a^{15} + \frac{4}{13} a^{14} - \frac{6}{13} a^{13} + \frac{2}{13} a^{12} + \frac{5}{13} a^{11} - \frac{4}{13} a^{10} + \frac{5}{13} a^{9} - \frac{4}{13} a^{8} + \frac{3}{13} a^{6} + \frac{3}{13} a^{5} + \frac{5}{13} a^{4} + \frac{5}{13} a^{3} + \frac{2}{13} a^{2} - \frac{4}{13} a - \frac{6}{13}$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $8$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$a^{15} + 5 a^{13} - a^{12} + 10 a^{11} - 4 a^{10} + 11 a^{9} - 6 a^{8} + 8 a^{7} - 4 a^{6} + 4 a^{5} - a^{4} + 2 a^{3} + a$$ (order $6$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental units: Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: $$147.731826961$$ magma: Regulator(K);  sage: K.regulator()  gp: K.reg

## Galois group

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A solvable group of order 3359232 The 275 conjugacy class representatives for t18n951 are not computed Character table for t18n951 is not computed

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ R ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ $18$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ $18$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3} 3.12.6.2x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
229Data not computed
433Data not computed
12457Data not computed