Normalized defining polynomial
\( x^{18} + 381 x^{16} - 6 x^{15} + 54000 x^{14} - 708 x^{13} + 3360784 x^{12} - 129816 x^{11} + 88101033 x^{10} - 4593018 x^{9} + 1454420187 x^{8} + 107838672 x^{7} + 15665949557 x^{6} + 2149578306 x^{5} + 112232882907 x^{4} + 28913721202 x^{3} + 534053961429 x^{2} + 154616908968 x + 1160832069377 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-45356173679730341731994070939714799306801152=-\,2^{18}\cdot 3^{24}\cdot 7^{9}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $266.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(3193,·)$, $\chi_{4788}(4591,·)$, $\chi_{4788}(1063,·)$, $\chi_{4788}(2659,·)$, $\chi_{4788}(4453,·)$, $\chi_{4788}(3751,·)$, $\chi_{4788}(2857,·)$, $\chi_{4788}(2155,·)$, $\chi_{4788}(1261,·)$, $\chi_{4788}(559,·)$, $\chi_{4788}(3697,·)$, $\chi_{4788}(2995,·)$, $\chi_{4788}(2101,·)$, $\chi_{4788}(1399,·)$, $\chi_{4788}(505,·)$, $\chi_{4788}(4255,·)$, $\chi_{4788}(1597,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{2}{7} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{7} + \frac{1}{7} a^{5} - \frac{2}{7} a^{4} + \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{14} a^{8} - \frac{1}{7} a^{5} + \frac{1}{14} a^{4} - \frac{3}{7} a^{3} - \frac{1}{14} a^{2} - \frac{3}{7} a - \frac{1}{14}$, $\frac{1}{14} a^{9} + \frac{1}{14} a^{5} - \frac{2}{7} a^{4} - \frac{5}{14} a^{3} - \frac{1}{7} a^{2} - \frac{3}{14} a + \frac{1}{7}$, $\frac{1}{14} a^{10} - \frac{1}{14} a^{6} - \frac{2}{7} a^{5} - \frac{1}{2} a^{4} + \frac{1}{7} a^{3} - \frac{1}{2} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{14} a^{11} - \frac{1}{14} a^{7} - \frac{1}{2} a^{5} + \frac{3}{7} a^{4} - \frac{1}{14} a^{3} - \frac{1}{7} a^{2} - \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{686} a^{12} - \frac{19}{686} a^{10} - \frac{2}{343} a^{9} - \frac{1}{343} a^{8} + \frac{18}{343} a^{7} + \frac{5}{343} a^{6} - \frac{131}{343} a^{5} - \frac{151}{686} a^{4} - \frac{88}{343} a^{3} - \frac{85}{343} a^{2} - \frac{113}{343} a - \frac{265}{686}$, $\frac{1}{686} a^{13} - \frac{19}{686} a^{11} - \frac{2}{343} a^{10} - \frac{1}{343} a^{9} - \frac{13}{686} a^{8} + \frac{5}{343} a^{7} + \frac{16}{343} a^{6} - \frac{53}{686} a^{5} + \frac{69}{686} a^{4} + \frac{111}{343} a^{3} - \frac{275}{686} a^{2} - \frac{265}{686} a - \frac{1}{2}$, $\frac{1}{686} a^{14} - \frac{2}{343} a^{11} - \frac{10}{343} a^{10} + \frac{9}{686} a^{9} + \frac{3}{98} a^{8} + \frac{15}{343} a^{7} - \frac{5}{343} a^{6} - \frac{107}{686} a^{5} + \frac{293}{686} a^{4} + \frac{1}{98} a^{3} - \frac{261}{686} a^{2} + \frac{67}{686} a + \frac{55}{343}$, $\frac{1}{686} a^{15} - \frac{10}{343} a^{11} - \frac{9}{343} a^{10} + \frac{5}{686} a^{9} + \frac{11}{343} a^{8} + \frac{18}{343} a^{7} - \frac{9}{343} a^{6} + \frac{323}{686} a^{5} + \frac{20}{343} a^{4} + \frac{113}{686} a^{3} + \frac{12}{343} a^{2} - \frac{54}{343} a + \frac{156}{343}$, $\frac{1}{780817258706036241193462852446028} a^{16} - \frac{81395515194059297762424768312}{195204314676509060298365713111507} a^{15} - \frac{3914128687032693636371699253}{27886330668072722899766530444501} a^{14} + \frac{5431188216306168118760045007}{390408629353018120596731426223014} a^{13} + \frac{21281395380735522188014902585}{390408629353018120596731426223014} a^{12} - \frac{10446177363483298944188285890437}{390408629353018120596731426223014} a^{11} - \frac{2483492921335383553436372043017}{195204314676509060298365713111507} a^{10} - \frac{4402999427315159559081601197508}{195204314676509060298365713111507} a^{9} + \frac{2679983079226034922120370823879}{780817258706036241193462852446028} a^{8} - \frac{3592160315765480097172808106127}{195204314676509060298365713111507} a^{7} + \frac{6481270641127936111304473394416}{195204314676509060298365713111507} a^{6} + \frac{87732620478691388744240304888479}{390408629353018120596731426223014} a^{5} - \frac{43269904307820401169289695901105}{111545322672290891599066121778004} a^{4} - \frac{62546894649797301877322749170461}{195204314676509060298365713111507} a^{3} - \frac{60026440377420249297119222464411}{195204314676509060298365713111507} a^{2} - \frac{151718719611214898187289330320105}{390408629353018120596731426223014} a + \frac{349954406328455822983202055992137}{780817258706036241193462852446028}$, $\frac{1}{173841400332076261788912558127401577283304814513276} a^{17} + \frac{17946247565513508}{43460350083019065447228139531850394320826203628319} a^{16} + \frac{3093539087485681332518991546457738388513186659}{12417242880862590127779468437671541234521772465234} a^{15} - \frac{29082293436284623247444076865511896521567376203}{86920700166038130894456279063700788641652407256638} a^{14} + \frac{10350773716036246621716617290209800632973448262}{43460350083019065447228139531850394320826203628319} a^{13} - \frac{27623179100925141229748005151133664197649685367}{86920700166038130894456279063700788641652407256638} a^{12} - \frac{2783325374280607191285527982438102613624949039315}{86920700166038130894456279063700788641652407256638} a^{11} + \frac{184938213260554304623014039296751886674448105222}{43460350083019065447228139531850394320826203628319} a^{10} + \frac{2565391047297915340688741592741352903260557610121}{173841400332076261788912558127401577283304814513276} a^{9} + \frac{2266671736068292885361197925627902294626050903471}{86920700166038130894456279063700788641652407256638} a^{8} - \frac{20673311376373832093567143669968547241348158007}{43460350083019065447228139531850394320826203628319} a^{7} + \frac{1517302357490024404249505766747816189978166499887}{86920700166038130894456279063700788641652407256638} a^{6} + \frac{29812559364055013977096633231275997729199391956165}{173841400332076261788912558127401577283304814513276} a^{5} - \frac{32107539572919508755029436179074997051897911880275}{86920700166038130894456279063700788641652407256638} a^{4} + \frac{2199067027839709497187930547736059300446326610709}{12417242880862590127779468437671541234521772465234} a^{3} - \frac{16859455779222875301464673779115156041719612375133}{43460350083019065447228139531850394320826203628319} a^{2} + \frac{79754041974115567108593354877522823190704768614395}{173841400332076261788912558127401577283304814513276} a + \frac{14909426500991293116866990283608513297294655516265}{86920700166038130894456279063700788641652407256638}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{28}\times C_{94276}$, which has order $168942592$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1472619.082400847 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-133}) \), \(\Q(\zeta_{9})^+\), 3.3.361.1, 3.3.29241.1, 3.3.29241.2, 6.0.987881686848.8, 6.0.54355325248.1, 6.0.356625288952128.2, 6.0.356625288952128.1, 9.9.25002110044521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |