Properties

Label 18.0.45352310057...4375.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{44}\cdot 5^{9}\cdot 11^{9}$
Root discriminant $108.76$
Ramified primes $3, 5, 11$
Class number $846748$ (GRH)
Class group $[846748]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![64264721489, -28501566129, 34466899041, -12699762504, 8346151809, -2590431399, 1200620121, -315334674, 113150061, -25028738, 7239870, -1326330, 313680, -45864, 8820, -948, 144, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 144*x^16 - 948*x^15 + 8820*x^14 - 45864*x^13 + 313680*x^12 - 1326330*x^11 + 7239870*x^10 - 25028738*x^9 + 113150061*x^8 - 315334674*x^7 + 1200620121*x^6 - 2590431399*x^5 + 8346151809*x^4 - 12699762504*x^3 + 34466899041*x^2 - 28501566129*x + 64264721489)
 
gp: K = bnfinit(x^18 - 9*x^17 + 144*x^16 - 948*x^15 + 8820*x^14 - 45864*x^13 + 313680*x^12 - 1326330*x^11 + 7239870*x^10 - 25028738*x^9 + 113150061*x^8 - 315334674*x^7 + 1200620121*x^6 - 2590431399*x^5 + 8346151809*x^4 - 12699762504*x^3 + 34466899041*x^2 - 28501566129*x + 64264721489, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 144 x^{16} - 948 x^{15} + 8820 x^{14} - 45864 x^{13} + 313680 x^{12} - 1326330 x^{11} + 7239870 x^{10} - 25028738 x^{9} + 113150061 x^{8} - 315334674 x^{7} + 1200620121 x^{6} - 2590431399 x^{5} + 8346151809 x^{4} - 12699762504 x^{3} + 34466899041 x^{2} - 28501566129 x + 64264721489 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-4535231005796548759010580522990234375=-\,3^{44}\cdot 5^{9}\cdot 11^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $108.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1485=3^{3}\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{1485}(1,·)$, $\chi_{1485}(331,·)$, $\chi_{1485}(1156,·)$, $\chi_{1485}(769,·)$, $\chi_{1485}(1099,·)$, $\chi_{1485}(274,·)$, $\chi_{1485}(1429,·)$, $\chi_{1485}(604,·)$, $\chi_{1485}(991,·)$, $\chi_{1485}(1264,·)$, $\chi_{1485}(166,·)$, $\chi_{1485}(934,·)$, $\chi_{1485}(1321,·)$, $\chi_{1485}(109,·)$, $\chi_{1485}(496,·)$, $\chi_{1485}(439,·)$, $\chi_{1485}(826,·)$, $\chi_{1485}(661,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{6913542239825672006322818799857609643123406225230784919274088609} a^{17} - \frac{3323506656001913304934137190033527540974210372061046434947345219}{6913542239825672006322818799857609643123406225230784919274088609} a^{16} - \frac{2157246127873425654089145165326306872658413146483346013137774755}{6913542239825672006322818799857609643123406225230784919274088609} a^{15} + \frac{937766368819381388666736240683307455197930611611060886998582383}{6913542239825672006322818799857609643123406225230784919274088609} a^{14} + \frac{3221480813825263436954495348956781622657007816795058602204039846}{6913542239825672006322818799857609643123406225230784919274088609} a^{13} - \frac{1634064467814841595272316729344191503369481533362606140690215070}{6913542239825672006322818799857609643123406225230784919274088609} a^{12} - \frac{2793065088764989240031117943257040970382593379670456206685872877}{6913542239825672006322818799857609643123406225230784919274088609} a^{11} + \frac{1806914943402079350137844325334078651017505043210433230648596856}{6913542239825672006322818799857609643123406225230784919274088609} a^{10} - \frac{1863097914165197760191808828556739573939271035092768257916245878}{6913542239825672006322818799857609643123406225230784919274088609} a^{9} + \frac{1386187872071866514009762128480414728094047257447196565805128}{11658587250970779100038480269574383883850600717083954332671313} a^{8} + \frac{649328433656848330595106335777725353124038796144769718163555445}{6913542239825672006322818799857609643123406225230784919274088609} a^{7} + \frac{135316070567805002735032643760150865915961696205151843974160423}{6913542239825672006322818799857609643123406225230784919274088609} a^{6} + \frac{2003852840374359520680328944445268848100091473836937146195861033}{6913542239825672006322818799857609643123406225230784919274088609} a^{5} + \frac{730977589985291015734116809062528882312790134869520619538921513}{6913542239825672006322818799857609643123406225230784919274088609} a^{4} - \frac{598478080049175665335839794382264879298583359259005807426126689}{6913542239825672006322818799857609643123406225230784919274088609} a^{3} - \frac{3222657681520424336565828770015046911081955173701710098388016943}{6913542239825672006322818799857609643123406225230784919274088609} a^{2} + \frac{3204771673787168940022309440790755443527062420275344812422120600}{6913542239825672006322818799857609643123406225230784919274088609} a - \frac{2426693865015788388754013848405925456188899493165355692506907396}{6913542239825672006322818799857609643123406225230784919274088609}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{846748}$, which has order $846748$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40934.03294431194 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-55}) \), \(\Q(\zeta_{9})^+\), 6.0.1091586375.3, \(\Q(\zeta_{27})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ R R ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ $18$ $18$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ $18$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
11Data not computed