Normalized defining polynomial
\( x^{18} - x^{17} + 5 x^{16} + 19 x^{15} + 8 x^{14} + 68 x^{13} + 90 x^{12} - 118 x^{11} + 653 x^{10} + 1339 x^{9} - 771 x^{8} + 51 x^{7} + 4810 x^{6} + 2562 x^{5} + 2212 x^{4} + 7728 x^{3} + 4256 x^{2} + 2688 x + 7168 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-453054841581020940100929875968=-\,2^{12}\cdot 7^{15}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{10} + \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{7} + \frac{3}{32} a^{6} + \frac{7}{32} a^{5} - \frac{3}{16} a^{4} - \frac{5}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{11} + \frac{1}{32} a^{9} + \frac{1}{32} a^{7} - \frac{1}{8} a^{6} - \frac{1}{32} a^{5} + \frac{7}{16} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{10} - \frac{1}{32} a^{9} - \frac{3}{64} a^{8} - \frac{1}{8} a^{7} - \frac{7}{64} a^{6} - \frac{7}{32} a^{5} - \frac{7}{32} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{11} - \frac{1}{64} a^{9} - \frac{1}{16} a^{8} - \frac{3}{64} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{3}{16} a^{4} - \frac{3}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{14} - \frac{1}{32} a^{9} - \frac{1}{64} a^{8} + \frac{1}{32} a^{7} + \frac{15}{128} a^{6} + \frac{1}{32} a^{5} - \frac{15}{64} a^{4} + \frac{7}{32} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{15} + \frac{1}{64} a^{9} - \frac{1}{32} a^{8} - \frac{9}{128} a^{7} - \frac{1}{8} a^{6} + \frac{15}{64} a^{5} - \frac{7}{32} a^{4} + \frac{5}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{23552} a^{16} + \frac{33}{23552} a^{15} + \frac{5}{11776} a^{14} + \frac{57}{11776} a^{13} - \frac{55}{11776} a^{12} + \frac{183}{11776} a^{11} + \frac{87}{5888} a^{10} - \frac{193}{5888} a^{9} - \frac{1047}{23552} a^{8} - \frac{2143}{23552} a^{7} + \frac{1085}{11776} a^{6} - \frac{951}{11776} a^{5} - \frac{1087}{5888} a^{4} + \frac{677}{1472} a^{3} + \frac{85}{736} a^{2} - \frac{1}{184} a - \frac{3}{23}$, $\frac{1}{995290788988928} a^{17} - \frac{1768382067}{248822697247232} a^{16} + \frac{429990890485}{995290788988928} a^{15} + \frac{16396525239}{124411348623616} a^{14} + \frac{938362896811}{124411348623616} a^{13} - \frac{1725157227395}{248822697247232} a^{12} + \frac{3827267667019}{497645394494464} a^{11} - \frac{221364042135}{31102837155904} a^{10} + \frac{48171283218717}{995290788988928} a^{9} + \frac{7154149862027}{248822697247232} a^{8} + \frac{85013756011333}{995290788988928} a^{7} - \frac{6732072977687}{124411348623616} a^{6} + \frac{6604719855237}{497645394494464} a^{5} + \frac{8183223583403}{248822697247232} a^{4} - \frac{185765591515}{2704594535296} a^{3} + \frac{541111987137}{1352297267648} a^{2} - \frac{2016996073725}{7775709288976} a + \frac{268219213763}{971963661122}$
Class group and class number
$C_{156}$, which has order $156$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 392092503.6861413 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.8281.1, 3.1.676.1, 6.0.480024727.1, 6.0.156742768.2, 9.3.36343632130624.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $7$ | 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 13 | Data not computed | ||||||