Normalized defining polynomial
\( x^{18} + 81 x^{16} - 221 x^{15} + 2784 x^{14} - 10842 x^{13} + 57423 x^{12} - 210678 x^{11} + 718602 x^{10} - 2094040 x^{9} + 5830770 x^{8} - 15415413 x^{7} + 39375297 x^{6} - 88940514 x^{5} + 164458332 x^{4} - 232245897 x^{3} + 233241462 x^{2} - 147873180 x + 45232552 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-451985616395723240517472053274603584=-\,2^{6}\cdot 3^{24}\cdot 13^{12}\cdot 181^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{7132610273633665135771863981818595582731243211600709295653423446128} a^{17} - \frac{2013110748278549190331492114934063253654053584434117050365907393}{48853495024888117368300438231634216320077008298634995175708379768} a^{16} + \frac{2267506357994971545257784796021619255185707905280609571664412207253}{7132610273633665135771863981818595582731243211600709295653423446128} a^{15} - \frac{736223267159710285609155835430105398453652673064022156964458967447}{7132610273633665135771863981818595582731243211600709295653423446128} a^{14} - \frac{1302307813507602277337422545388909483988493782678382222592299523817}{3566305136816832567885931990909297791365621605800354647826711723064} a^{13} + \frac{988289242023435913592147241296704288126631303436218316149830805037}{3566305136816832567885931990909297791365621605800354647826711723064} a^{12} - \frac{163238131433183439566793831578458046755746430252899183034307816821}{7132610273633665135771863981818595582731243211600709295653423446128} a^{11} - \frac{11392074104268542934477539485554731609155530705044077668545849615}{24426747512444058684150219115817108160038504149317497587854189884} a^{10} + \frac{624664268302491718184194009839252198392179031128858218167966864937}{3566305136816832567885931990909297791365621605800354647826711723064} a^{9} - \frac{172548957532422022365587984782055651357243926859037266698081904187}{1783152568408416283942965995454648895682810802900177323913355861532} a^{8} - \frac{794724174442899263583005632693928139277353714092884873743778627515}{3566305136816832567885931990909297791365621605800354647826711723064} a^{7} + \frac{1083455840038401439433628875509086454742105333927490122158950845175}{7132610273633665135771863981818595582731243211600709295653423446128} a^{6} - \frac{496823109681959261785353911915787018941572374806473336596887429949}{7132610273633665135771863981818595582731243211600709295653423446128} a^{5} - \frac{359664044360627579835018259860087858867614682641158169052341475595}{891576284204208141971482997727324447841405401450088661956677930766} a^{4} + \frac{364972811924660636344438142831309892195300683858819575602504555027}{1783152568408416283942965995454648895682810802900177323913355861532} a^{3} + \frac{1076517765551327386868703888563174860915284944380068558789477978111}{7132610273633665135771863981818595582731243211600709295653423446128} a^{2} + \frac{311534123778575339195651609533500625812902177511980423954422801487}{891576284204208141971482997727324447841405401450088661956677930766} a - \frac{7673463423532430610989477686477764696076653742415988607685395963}{24426747512444058684150219115817108160038504149317497587854189884}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{7026}$, which has order $56208$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.136445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 96 conjugacy class representatives for t18n459 are not computed |
| Character table for t18n459 is not computed |
Intermediate fields
| 3.3.13689.2, 3.3.13689.1, \(\Q(\zeta_{9})^+\), 3.3.169.1, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 181 | Data not computed | ||||||