Normalized defining polynomial
\( x^{18} - 9 x^{17} + 180 x^{16} - 1236 x^{15} + 14004 x^{14} - 77112 x^{13} + 632832 x^{12} - 2848122 x^{11} + 18488502 x^{10} - 68032562 x^{9} + 363852909 x^{8} - 1075648194 x^{7} + 4833747609 x^{6} - 10993834143 x^{5} + 41823565245 x^{4} - 66458281248 x^{3} + 213718242393 x^{2} - 182157522921 x + 490347077061 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-45150269416273000041555802844069788311=-\,3^{44}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1917=3^{3}\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1917}(640,·)$, $\chi_{1917}(1,·)$, $\chi_{1917}(1348,·)$, $\chi_{1917}(709,·)$, $\chi_{1917}(70,·)$, $\chi_{1917}(1492,·)$, $\chi_{1917}(853,·)$, $\chi_{1917}(214,·)$, $\chi_{1917}(1561,·)$, $\chi_{1917}(922,·)$, $\chi_{1917}(283,·)$, $\chi_{1917}(1705,·)$, $\chi_{1917}(1066,·)$, $\chi_{1917}(427,·)$, $\chi_{1917}(1774,·)$, $\chi_{1917}(1135,·)$, $\chi_{1917}(496,·)$, $\chi_{1917}(1279,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{37951806805409703891284842732184076574331971339612482132245148465889} a^{17} + \frac{12580888554000941482543658822326412636863586684433088315579204812954}{37951806805409703891284842732184076574331971339612482132245148465889} a^{16} + \frac{2692364109997352954765394806772817909932545518623982026197480843557}{37951806805409703891284842732184076574331971339612482132245148465889} a^{15} + \frac{6277932255954264492195147943588548075827788119083710512796696989459}{37951806805409703891284842732184076574331971339612482132245148465889} a^{14} - \frac{8745031453165538587216383839036350169013316277902171155735887880804}{37951806805409703891284842732184076574331971339612482132245148465889} a^{13} + \frac{11796088110054283017314836323144496482378995588613370514595730291026}{37951806805409703891284842732184076574331971339612482132245148465889} a^{12} + \frac{3892046123180999165916122645068836083007703618895696523158419986749}{37951806805409703891284842732184076574331971339612482132245148465889} a^{11} + \frac{15233102250962661734031490118828110029948085274153811188900444271539}{37951806805409703891284842732184076574331971339612482132245148465889} a^{10} - \frac{6642724537830176587479724253711906626535770595677794677732539173628}{37951806805409703891284842732184076574331971339612482132245148465889} a^{9} - \frac{2637217514023243076340085038642613427266732155718646140483713059617}{37951806805409703891284842732184076574331971339612482132245148465889} a^{8} - \frac{5196702757921046349198238620539241516377942167358649478280652065132}{37951806805409703891284842732184076574331971339612482132245148465889} a^{7} + \frac{5041128069481872343061058690441154441931629948808694185544596287917}{37951806805409703891284842732184076574331971339612482132245148465889} a^{6} + \frac{10260553315485176239268893183312557832773169255872233636467537491879}{37951806805409703891284842732184076574331971339612482132245148465889} a^{5} + \frac{13206821616168408935785588979235295824755042291179480936413012219929}{37951806805409703891284842732184076574331971339612482132245148465889} a^{4} + \frac{13234570176854743688512844548466501583183382121558713338127761995009}{37951806805409703891284842732184076574331971339612482132245148465889} a^{3} - \frac{47698727588621611991343315603682183901818212600743977238695518884}{37951806805409703891284842732184076574331971339612482132245148465889} a^{2} - \frac{16817666218393938219820320081315666235185150070282842914742583252137}{37951806805409703891284842732184076574331971339612482132245148465889} a + \frac{8207626157262482888129225652563461569807878800402865069886413936300}{37951806805409703891284842732184076574331971339612482132245148465889}$
Class group and class number
$C_{2}\times C_{3406662}$, which has order $6813324$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-71}) \), \(\Q(\zeta_{9})^+\), 6.0.2348254071.3, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| $71$ | 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |