Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} + 12 x^{15} - 15 x^{14} - 69 x^{13} + 203 x^{12} + 15 x^{11} - 170 x^{10} + 306 x^{9} + 642 x^{8} + 288 x^{7} + 324 x^{6} + 243 x^{5} + 2214 x^{4} + 729 x^{3} + 1296 x^{2} - 243 x + 729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-450781011699067762218867843=-\,3^{9}\cdot 73^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{5}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{6}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{11} + \frac{1}{9} a^{8} - \frac{4}{27} a^{7} + \frac{1}{9} a^{6} - \frac{11}{27} a^{5} + \frac{4}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{14} - \frac{1}{81} a^{12} + \frac{1}{27} a^{9} + \frac{5}{81} a^{8} + \frac{4}{27} a^{7} - \frac{2}{81} a^{6} + \frac{7}{27} a^{5} + \frac{2}{27} a^{4} - \frac{1}{3} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{43416} a^{15} - \frac{1}{21708} a^{14} - \frac{109}{43416} a^{13} + \frac{275}{10854} a^{12} - \frac{109}{4824} a^{11} + \frac{415}{14472} a^{10} - \frac{601}{10854} a^{9} - \frac{647}{21708} a^{8} + \frac{3025}{43416} a^{7} + \frac{13}{648} a^{6} - \frac{101}{536} a^{5} - \frac{77}{1809} a^{4} - \frac{1385}{4824} a^{3} + \frac{1393}{4824} a^{2} + \frac{605}{1608} a + \frac{195}{536}$, $\frac{1}{76976568} a^{16} + \frac{145}{25658856} a^{15} - \frac{406735}{76976568} a^{14} - \frac{266359}{25658856} a^{13} + \frac{906197}{25658856} a^{12} + \frac{85381}{6414714} a^{11} + \frac{1930973}{76976568} a^{10} - \frac{228169}{4276476} a^{9} - \frac{8105045}{76976568} a^{8} - \frac{414913}{6414714} a^{7} - \frac{103601}{4276476} a^{6} - \frac{441275}{2850984} a^{5} + \frac{82069}{2850984} a^{4} + \frac{28697}{237582} a^{3} - \frac{323159}{712746} a^{2} - \frac{189713}{475164} a + \frac{140965}{316776}$, $\frac{1}{690556791528} a^{17} - \frac{2279}{690556791528} a^{16} + \frac{707809}{86319598941} a^{15} + \frac{2238476999}{690556791528} a^{14} + \frac{432097427}{28773199647} a^{13} + \frac{338700031}{12788088732} a^{12} - \frac{4604525359}{172639197882} a^{11} - \frac{4951334491}{690556791528} a^{10} - \frac{6099089117}{690556791528} a^{9} + \frac{13007617412}{86319598941} a^{8} + \frac{15982974833}{230185597176} a^{7} + \frac{518364145}{12788088732} a^{6} + \frac{189362480}{1065674061} a^{5} - \frac{215952129}{473632916} a^{4} - \frac{3667073603}{25576177464} a^{3} + \frac{2360607337}{25576177464} a^{2} + \frac{882930043}{4262696244} a - \frac{11443421}{2841797496}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{937579}{3505364424} a^{17} + \frac{5063}{97371234} a^{16} + \frac{3004237}{3505364424} a^{15} - \frac{437629}{64914156} a^{14} - \frac{6230657}{1168454808} a^{13} + \frac{34531697}{1168454808} a^{12} - \frac{817765}{438170553} a^{11} - \frac{43714975}{292113702} a^{10} + \frac{79631849}{3505364424} a^{9} + \frac{59625887}{1168454808} a^{8} - \frac{158813581}{389484936} a^{7} - \frac{8636273}{16228539} a^{6} - \frac{40873397}{129828312} a^{5} - \frac{13073}{215304} a^{4} - \frac{89573011}{129828312} a^{3} - \frac{73056277}{43276104} a^{2} - \frac{858260}{1803171} a + \frac{403491}{2404228} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11712449.488 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.15987.1 x3, 3.3.5329.1, 6.0.766752507.2, 6.0.143883.1 x2, 6.0.766752507.1, 9.3.4086024109803.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.143883.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $73$ | 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |