Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 114 x^{15} + 99 x^{14} + 315 x^{13} - 834 x^{12} - 639 x^{11} + 6543 x^{10} - 11714 x^{9} + 5733 x^{8} - 10035 x^{7} + 74517 x^{6} - 126324 x^{5} - 58824 x^{4} + 291912 x^{3} - 119808 x^{2} - 178992 x + 204304 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-450283905890997363000000000000=-\,2^{12}\cdot 3^{37}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{18} a^{9} + \frac{1}{3} a^{6} - \frac{1}{6} a^{3} + \frac{1}{9}$, $\frac{1}{18} a^{10} + \frac{1}{3} a^{7} - \frac{1}{6} a^{4} + \frac{1}{9} a$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{8} - \frac{1}{6} a^{5} - \frac{7}{18} a^{2}$, $\frac{1}{684} a^{12} - \frac{1}{114} a^{11} + \frac{1}{342} a^{10} - \frac{1}{684} a^{9} + \frac{7}{38} a^{8} - \frac{26}{57} a^{7} - \frac{33}{76} a^{6} - \frac{17}{38} a^{5} + \frac{23}{114} a^{4} + \frac{149}{684} a^{3} - \frac{29}{114} a^{2} + \frac{10}{171} a + \frac{28}{171}$, $\frac{1}{4104} a^{13} - \frac{1}{4104} a^{12} - \frac{11}{684} a^{11} - \frac{67}{4104} a^{10} - \frac{107}{4104} a^{9} - \frac{13}{57} a^{8} - \frac{35}{152} a^{7} - \frac{199}{456} a^{6} + \frac{5}{228} a^{5} + \frac{1067}{4104} a^{4} + \frac{571}{4104} a^{3} + \frac{62}{171} a^{2} - \frac{473}{1026} a - \frac{145}{1026}$, $\frac{1}{660744} a^{14} - \frac{11}{94392} a^{13} - \frac{11}{23598} a^{12} - \frac{1333}{94392} a^{11} - \frac{2245}{94392} a^{10} + \frac{895}{47196} a^{9} + \frac{8515}{73416} a^{8} - \frac{3691}{73416} a^{7} - \frac{203}{2622} a^{6} - \frac{19267}{94392} a^{5} - \frac{16795}{94392} a^{4} + \frac{12481}{47196} a^{3} - \frac{32023}{82593} a^{2} - \frac{107}{8694} a - \frac{40780}{82593}$, $\frac{1}{11232648} a^{15} - \frac{1}{1872108} a^{14} - \frac{5}{59432} a^{13} - \frac{179}{1604664} a^{12} - \frac{1277}{66861} a^{11} + \frac{2345}{178296} a^{10} + \frac{10891}{11232648} a^{9} - \frac{129433}{624036} a^{8} + \frac{124129}{1248072} a^{7} - \frac{8629}{1604664} a^{6} + \frac{5437}{66861} a^{5} - \frac{43409}{178296} a^{4} + \frac{102223}{1404081} a^{3} - \frac{8842}{468027} a^{2} + \frac{26849}{312018} a + \frac{278896}{1404081}$, $\frac{1}{157257072} a^{16} - \frac{1}{157257072} a^{15} + \frac{113}{157257072} a^{14} - \frac{166}{1404081} a^{13} - \frac{5125}{22465296} a^{12} + \frac{181753}{22465296} a^{11} - \frac{11177}{569772} a^{10} + \frac{3151775}{157257072} a^{9} + \frac{3977671}{17473008} a^{8} - \frac{5803907}{19657134} a^{7} - \frac{3014579}{22465296} a^{6} + \frac{1708255}{22465296} a^{5} + \frac{56061847}{157257072} a^{4} + \frac{2992301}{11232648} a^{3} + \frac{5934065}{39314268} a^{2} - \frac{19865}{267444} a - \frac{8966935}{19657134}$, $\frac{1}{33735958493369328} a^{17} - \frac{267203}{1405664937223722} a^{16} + \frac{515118263}{16867979246684664} a^{15} - \frac{1179853039}{11245319497789776} a^{14} - \frac{294082050149}{4819422641909904} a^{13} + \frac{1674269457389}{2409711320954952} a^{12} - \frac{1562655459079}{33735958493369328} a^{11} + \frac{41895682575833}{4819422641909904} a^{10} - \frac{84669851901527}{8433989623342332} a^{9} + \frac{344358610940543}{1775576762808912} a^{8} - \frac{2734870554649439}{11245319497789776} a^{7} + \frac{978864490960723}{2409711320954952} a^{6} + \frac{1094390280344891}{5622659748894888} a^{5} + \frac{242090317896487}{1466780804059536} a^{4} + \frac{5771742995117359}{16867979246684664} a^{3} + \frac{976297413703613}{4216994811671166} a^{2} - \frac{2086513087677917}{8433989623342332} a + \frac{12800721443945}{37318538156382}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}$, which has order $81$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{272746849}{36236260465488} a^{17} + \frac{250176793}{4529532558186} a^{16} - \frac{4388541383}{18118130232744} a^{15} + \frac{14637653759}{36236260465488} a^{14} + \frac{7928152547}{36236260465488} a^{13} - \frac{26473623211}{9059065116372} a^{12} + \frac{100387563077}{36236260465488} a^{11} + \frac{22076899069}{2131544733264} a^{10} - \frac{693570669725}{18118130232744} a^{9} + \frac{911501994481}{36236260465488} a^{8} + \frac{1496642207677}{36236260465488} a^{7} + \frac{20547117563}{532886183316} a^{6} - \frac{920102951975}{2264766279093} a^{5} + \frac{6660715405075}{36236260465488} a^{4} + \frac{6051126037043}{4529532558186} a^{3} - \frac{3282983412755}{2264766279093} a^{2} - \frac{7240253437679}{9059065116372} a + \frac{41326196150}{20042179461} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2421999.57121 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.24300.1 x3, 3.1.243.1 x3, 3.1.2700.1 x3, 3.1.24300.3 x3, 6.0.1771470000.3, 6.0.177147.2, 6.0.21870000.2, 6.0.1771470000.1, 9.1.387420489000000.9 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |