Normalized defining polynomial
\( x^{18} + 504 x^{12} - 12528 x^{6} + 110592 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-450283905890997363000000000000=-\,2^{12}\cdot 3^{37}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{6} - \frac{1}{4} a^{3}$, $\frac{1}{24} a^{7} - \frac{1}{2} a$, $\frac{1}{48} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{192} a^{9} + \frac{1}{16} a^{3}$, $\frac{1}{576} a^{10} + \frac{1}{48} a^{4}$, $\frac{1}{576} a^{11} + \frac{1}{48} a^{5}$, $\frac{1}{29952} a^{12} - \frac{1}{384} a^{9} - \frac{1}{64} a^{6} - \frac{1}{32} a^{3} + \frac{7}{26}$, $\frac{1}{89856} a^{13} - \frac{1}{1152} a^{10} + \frac{1}{576} a^{9} + \frac{5}{576} a^{7} + \frac{1}{12} a^{5} - \frac{1}{96} a^{4} + \frac{1}{48} a^{3} - \frac{1}{2} a^{2} + \frac{10}{39} a$, $\frac{1}{89856} a^{14} - \frac{1}{1152} a^{11} + \frac{5}{576} a^{8} - \frac{1}{96} a^{5} + \frac{10}{39} a^{2}$, $\frac{1}{179712} a^{15} + \frac{1}{576} a^{9} - \frac{191}{1248} a^{3} - \frac{1}{2}$, $\frac{1}{359424} a^{16} - \frac{1}{1152} a^{10} - \frac{1}{48} a^{7} + \frac{23}{832} a^{4} - \frac{1}{4} a$, $\frac{1}{718848} a^{17} + \frac{1}{2304} a^{11} - \frac{1}{96} a^{8} + \frac{121}{4992} a^{5} + \frac{3}{8} a^{2}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{19968} a^{15} - \frac{5}{192} a^{9} + \frac{105}{416} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6356272.17472 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.972.2 x3, 3.1.24300.2 x3, 3.1.675.1 x3, 3.1.24300.3 x3, 6.0.2834352.2, 6.0.1771470000.4, 6.0.1366875.1, 6.0.1771470000.1, 9.1.387420489000000.23 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |