Properties

Label 18.0.45028390589...0000.6
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{12}\cdot 3^{37}\cdot 5^{12}$
Root discriminant $44.40$
Ramified primes $2, 3, 5$
Class number $27$ (GRH)
Class group $[3, 3, 3]$ (GRH)
Galois group $C_3^2 : C_2$ (as 18T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![110592, 0, 0, 0, 0, 0, -12528, 0, 0, 0, 0, 0, 504, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 504*x^12 - 12528*x^6 + 110592)
 
gp: K = bnfinit(x^18 + 504*x^12 - 12528*x^6 + 110592, 1)
 

Normalized defining polynomial

\( x^{18} + 504 x^{12} - 12528 x^{6} + 110592 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-450283905890997363000000000000=-\,2^{12}\cdot 3^{37}\cdot 5^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{6} - \frac{1}{4} a^{3}$, $\frac{1}{24} a^{7} - \frac{1}{2} a$, $\frac{1}{48} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{192} a^{9} + \frac{1}{16} a^{3}$, $\frac{1}{576} a^{10} + \frac{1}{48} a^{4}$, $\frac{1}{576} a^{11} + \frac{1}{48} a^{5}$, $\frac{1}{29952} a^{12} - \frac{1}{384} a^{9} - \frac{1}{64} a^{6} - \frac{1}{32} a^{3} + \frac{7}{26}$, $\frac{1}{89856} a^{13} - \frac{1}{1152} a^{10} + \frac{1}{576} a^{9} + \frac{5}{576} a^{7} + \frac{1}{12} a^{5} - \frac{1}{96} a^{4} + \frac{1}{48} a^{3} - \frac{1}{2} a^{2} + \frac{10}{39} a$, $\frac{1}{89856} a^{14} - \frac{1}{1152} a^{11} + \frac{5}{576} a^{8} - \frac{1}{96} a^{5} + \frac{10}{39} a^{2}$, $\frac{1}{179712} a^{15} + \frac{1}{576} a^{9} - \frac{191}{1248} a^{3} - \frac{1}{2}$, $\frac{1}{359424} a^{16} - \frac{1}{1152} a^{10} - \frac{1}{48} a^{7} + \frac{23}{832} a^{4} - \frac{1}{4} a$, $\frac{1}{718848} a^{17} + \frac{1}{2304} a^{11} - \frac{1}{96} a^{8} + \frac{121}{4992} a^{5} + \frac{3}{8} a^{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1}{19968} a^{15} - \frac{5}{192} a^{9} + \frac{105}{416} a^{3} + \frac{1}{2} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6356272.17472 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:S_3$ (as 18T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 6 conjugacy class representatives for $C_3^2 : C_2$
Character table for $C_3^2 : C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.972.2 x3, 3.1.24300.2 x3, 3.1.675.1 x3, 3.1.24300.3 x3, 6.0.2834352.2, 6.0.1771470000.4, 6.0.1366875.1, 6.0.1771470000.1, 9.1.387420489000000.23 x9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 9 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
3Data not computed
$5$5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$