Properties

Label 18.0.450...000.5
Degree $18$
Signature $[0, 9]$
Discriminant $-4.503\times 10^{29}$
Root discriminant \(44.40\)
Ramified primes $2,3,5$
Class number $27$ (GRH)
Class group [3, 3, 3] (GRH)
Galois group $C_3^2 : C_2$ (as 18T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 45*x^16 - 126*x^15 + 189*x^14 - 27*x^13 - 516*x^12 + 1071*x^11 + 1557*x^10 - 14664*x^9 + 43227*x^8 - 82809*x^7 + 123129*x^6 - 113832*x^5 + 17064*x^4 + 45324*x^3 + 13500*x^2 + 8316*x + 4356)
 
gp: K = bnfinit(y^18 - 9*y^17 + 45*y^16 - 126*y^15 + 189*y^14 - 27*y^13 - 516*y^12 + 1071*y^11 + 1557*y^10 - 14664*y^9 + 43227*y^8 - 82809*y^7 + 123129*y^6 - 113832*y^5 + 17064*y^4 + 45324*y^3 + 13500*y^2 + 8316*y + 4356, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^17 + 45*x^16 - 126*x^15 + 189*x^14 - 27*x^13 - 516*x^12 + 1071*x^11 + 1557*x^10 - 14664*x^9 + 43227*x^8 - 82809*x^7 + 123129*x^6 - 113832*x^5 + 17064*x^4 + 45324*x^3 + 13500*x^2 + 8316*x + 4356);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 9*x^17 + 45*x^16 - 126*x^15 + 189*x^14 - 27*x^13 - 516*x^12 + 1071*x^11 + 1557*x^10 - 14664*x^9 + 43227*x^8 - 82809*x^7 + 123129*x^6 - 113832*x^5 + 17064*x^4 + 45324*x^3 + 13500*x^2 + 8316*x + 4356)
 

\( x^{18} - 9 x^{17} + 45 x^{16} - 126 x^{15} + 189 x^{14} - 27 x^{13} - 516 x^{12} + 1071 x^{11} + \cdots + 4356 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-450283905890997363000000000000\) \(\medspace = -\,2^{12}\cdot 3^{37}\cdot 5^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(44.40\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{37/18}5^{2/3}\approx 44.40336798307826$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Gal(K/\Q) }$:  $18$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5}a^{6}+\frac{2}{5}a^{5}+\frac{1}{5}a^{4}-\frac{2}{5}a^{3}+\frac{1}{5}a^{2}+\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{7}+\frac{2}{5}a^{5}+\frac{1}{5}a^{4}+\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{5}a^{8}+\frac{2}{5}a^{5}-\frac{2}{5}a^{4}-\frac{1}{5}a^{3}-\frac{1}{5}a-\frac{2}{5}$, $\frac{1}{45}a^{9}+\frac{1}{5}a^{5}-\frac{2}{5}a^{4}-\frac{2}{15}a^{3}-\frac{2}{5}a^{2}+\frac{1}{5}a+\frac{1}{15}$, $\frac{1}{45}a^{10}+\frac{1}{5}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a-\frac{1}{5}$, $\frac{1}{45}a^{11}+\frac{4}{15}a^{5}-\frac{1}{5}a^{4}+\frac{2}{5}a^{3}+\frac{7}{15}a^{2}+\frac{2}{5}a-\frac{1}{5}$, $\frac{1}{450}a^{12}+\frac{2}{225}a^{11}-\frac{2}{225}a^{10}-\frac{1}{90}a^{9}-\frac{2}{25}a^{7}+\frac{7}{150}a^{6}+\frac{14}{75}a^{5}-\frac{7}{15}a^{4}+\frac{1}{30}a^{3}-\frac{4}{75}a^{2}-\frac{11}{75}a-\frac{4}{75}$, $\frac{1}{2700}a^{13}-\frac{1}{900}a^{12}+\frac{1}{150}a^{11}-\frac{1}{100}a^{10}+\frac{1}{180}a^{9}-\frac{2}{25}a^{8}-\frac{59}{900}a^{7}+\frac{1}{100}a^{6}-\frac{31}{150}a^{5}+\frac{53}{180}a^{4}+\frac{49}{300}a^{3}-\frac{6}{25}a^{2}+\frac{17}{50}a+\frac{31}{150}$, $\frac{1}{2700}a^{14}-\frac{1}{900}a^{12}-\frac{7}{900}a^{11}-\frac{1}{150}a^{10}+\frac{1}{300}a^{9}+\frac{17}{180}a^{8}-\frac{2}{75}a^{7}-\frac{7}{100}a^{6}-\frac{89}{900}a^{5}-\frac{21}{50}a^{4}+\frac{7}{60}a^{3}+\frac{19}{150}a^{2}-\frac{2}{25}a+\frac{13}{50}$, $\frac{1}{491400}a^{15}+\frac{43}{491400}a^{14}+\frac{1}{10920}a^{13}+\frac{1}{20475}a^{12}+\frac{193}{32760}a^{11}+\frac{1669}{163800}a^{10}-\frac{59}{6825}a^{9}-\frac{1513}{32760}a^{8}-\frac{4621}{54600}a^{7}-\frac{493}{8190}a^{6}+\frac{81691}{163800}a^{5}+\frac{1129}{4200}a^{4}-\frac{125}{312}a^{3}-\frac{5387}{27300}a^{2}+\frac{577}{5460}a-\frac{5489}{27300}$, $\frac{1}{982800}a^{16}-\frac{1}{982800}a^{15}-\frac{1}{36400}a^{14}-\frac{17}{122850}a^{13}-\frac{23}{65520}a^{12}+\frac{599}{109200}a^{11}+\frac{67}{8190}a^{10}-\frac{389}{36400}a^{9}-\frac{281}{5200}a^{8}-\frac{269}{5460}a^{7}+\frac{19763}{327600}a^{6}+\frac{10513}{21840}a^{5}+\frac{19031}{327600}a^{4}+\frac{281}{18200}a^{3}-\frac{1769}{3640}a^{2}+\frac{4633}{18200}a+\frac{5597}{13650}$, $\frac{1}{53\!\cdots\!00}a^{17}+\frac{1810860823}{53\!\cdots\!00}a^{16}+\frac{1893923791}{53\!\cdots\!00}a^{15}+\frac{21553673837}{26\!\cdots\!00}a^{14}-\frac{24307891321}{152357965634160}a^{13}+\frac{343092561479}{592503199688400}a^{12}-\frac{4719475837261}{888754799532600}a^{11}-\frac{2705797562153}{253929942723600}a^{10}+\frac{4500814941499}{592503199688400}a^{9}+\frac{1134149756321}{25392994272360}a^{8}-\frac{7888085742499}{136731507620400}a^{7}+\frac{113580175230727}{17\!\cdots\!00}a^{6}-\frac{169809727697399}{17\!\cdots\!00}a^{5}+\frac{85301523097897}{444377399766300}a^{4}+\frac{14558309510611}{29625159984420}a^{3}-\frac{2330361425611}{14107219040200}a^{2}-\frac{15192830396421}{49375266640700}a+\frac{903761133139}{1923711687300}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{2330596735}{30471593126832} a^{17} + \frac{8337083525}{11850063993768} a^{16} - \frac{42205415257}{11850063993768} a^{15} + \frac{242116368005}{23700127987536} a^{14} - \frac{1137037775285}{71100383962608} a^{13} + \frac{2885146570}{634824856809} a^{12} + \frac{2705471032685}{71100383962608} a^{11} - \frac{6092379038987}{71100383962608} a^{10} - \frac{42410881345}{390661450344} a^{9} + \frac{81252868483685}{71100383962608} a^{8} - \frac{11756117569715}{3385732569648} a^{7} + \frac{40567998752245}{5925031996884} a^{6} - \frac{5198272583684}{493752666407} a^{5} + \frac{251078784934655}{23700127987536} a^{4} - \frac{10210731386615}{2962515998442} a^{3} - \frac{3430466263275}{1975010665628} a^{2} - \frac{2955645331495}{1692866284824} a - \frac{816500707}{134659818111} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{37997493239}{533252879719560}a^{17}-\frac{702544588199}{10\!\cdots\!20}a^{16}+\frac{17762491985027}{53\!\cdots\!00}a^{15}-\frac{10175326550981}{10\!\cdots\!20}a^{14}+\frac{2608773727279}{177750959906520}a^{13}-\frac{124021750791}{39500213312560}a^{12}-\frac{22775610797587}{592503199688400}a^{11}+\frac{8199726914629}{98750533281400}a^{10}+\frac{2452541711149}{23700127987536}a^{9}-\frac{385121986158673}{355501919813040}a^{8}+\frac{82913522530757}{25392994272360}a^{7}-\frac{11\!\cdots\!09}{17\!\cdots\!00}a^{6}+\frac{16\!\cdots\!03}{17\!\cdots\!00}a^{5}-\frac{10\!\cdots\!41}{118500639937680}a^{4}+\frac{13203502117177}{8464331424120}a^{3}+\frac{47308594150133}{11850063993768}a^{2}+\frac{32475279263489}{296251599844200}a-\frac{74881257911}{73988911050}$, $\frac{57694763317}{10\!\cdots\!20}a^{17}-\frac{1259207950277}{26\!\cdots\!00}a^{16}+\frac{2982028465421}{13\!\cdots\!00}a^{15}-\frac{5993185172687}{10\!\cdots\!20}a^{14}+\frac{2084162132447}{355501919813040}a^{13}+\frac{32293550243}{4232165712060}a^{12}-\frac{1640963234641}{45577169206800}a^{11}+\frac{9416976463053}{197501066562800}a^{10}+\frac{7722681406511}{59250319968840}a^{9}-\frac{289772027508727}{355501919813040}a^{8}+\frac{706229751303061}{355501919813040}a^{7}-\frac{333209224702381}{111094349941575}a^{6}+\frac{29\!\cdots\!49}{888754799532600}a^{5}-\frac{11321323347757}{23700127987536}a^{4}-\frac{361571434565333}{59250319968840}a^{3}+\frac{766139284807}{113942923017}a^{2}+\frac{446218519602203}{296251599844200}a-\frac{1108706267777}{2693196362220}$, $\frac{4539051991}{133313219929890}a^{17}-\frac{375192172577}{13\!\cdots\!00}a^{16}+\frac{116805369887}{88875479953260}a^{15}-\frac{1095184017869}{333283049824725}a^{14}+\frac{1691124067163}{444377399766300}a^{13}+\frac{921954341603}{444377399766300}a^{12}-\frac{398805407857}{24687633320350}a^{11}+\frac{633712819219}{29625159984420}a^{10}+\frac{33288777360287}{444377399766300}a^{9}-\frac{47782251416932}{111094349941575}a^{8}+\frac{69900599222671}{63482485680900}a^{7}-\frac{294735106987613}{148125799922100}a^{6}+\frac{8502275731793}{3174124284045}a^{5}-\frac{71241922431356}{37031449980525}a^{4}-\frac{14584375724546}{37031449980525}a^{3}+\frac{54397927494059}{37031449980525}a^{2}-\frac{1044776143673}{7406289996105}a+\frac{67539621278}{673299090555}$, $\frac{27880523329}{10\!\cdots\!20}a^{17}-\frac{311770704811}{26\!\cdots\!00}a^{16}+\frac{1768641071}{5078598854472}a^{15}+\frac{1180376735959}{53\!\cdots\!00}a^{14}-\frac{245498770901}{118500639937680}a^{13}+\frac{604116400339}{148125799922100}a^{12}-\frac{453311684183}{253929942723600}a^{11}-\frac{23029440264053}{17\!\cdots\!00}a^{10}+\frac{7200546493489}{98750533281400}a^{9}-\frac{1770744251753}{16928662848240}a^{8}-\frac{88682537442593}{17\!\cdots\!00}a^{7}+\frac{7773367121162}{37031449980525}a^{6}-\frac{155236690734679}{222188699883150}a^{5}+\frac{302279889117287}{197501066562800}a^{4}-\frac{279281672435}{987505332814}a^{3}-\frac{289736851194211}{148125799922100}a^{2}-\frac{7315259400941}{19750106656280}a-\frac{79863972082}{1122165150925}$, $\frac{820235610851}{26\!\cdots\!00}a^{17}-\frac{969248200633}{333283049824725}a^{16}+\frac{900849548321}{59250319968840}a^{15}-\frac{1178358021277}{25637157678825}a^{14}+\frac{53230280062117}{666566099649450}a^{13}-\frac{19228077952537}{444377399766300}a^{12}-\frac{69122697615989}{444377399766300}a^{11}+\frac{49538555591134}{111094349941575}a^{10}+\frac{3929999127631}{15870621420225}a^{9}-\frac{58951860221318}{12343816660175}a^{8}+\frac{17\!\cdots\!53}{111094349941575}a^{7}-\frac{125813119433283}{3798097433900}a^{6}+\frac{45\!\cdots\!63}{888754799532600}a^{5}-\frac{58\!\cdots\!47}{111094349941575}a^{4}+\frac{19\!\cdots\!19}{98750533281400}a^{3}+\frac{554194072000801}{49375266640700}a^{2}-\frac{47422653140419}{37031449980525}a+\frac{7083029690171}{1923711687300}$, $\frac{811524515891}{17\!\cdots\!00}a^{17}-\frac{7757183075959}{17\!\cdots\!00}a^{16}+\frac{40256472387979}{17\!\cdots\!00}a^{15}-\frac{9979970277337}{148125799922100}a^{14}+\frac{591688815156863}{53\!\cdots\!00}a^{13}-\frac{76248712387831}{17\!\cdots\!00}a^{12}-\frac{109127217536873}{444377399766300}a^{11}+\frac{10\!\cdots\!47}{17\!\cdots\!00}a^{10}+\frac{886291304741189}{17\!\cdots\!00}a^{9}-\frac{40723412404403}{5697146150850}a^{8}+\frac{41\!\cdots\!11}{17\!\cdots\!00}a^{7}-\frac{27\!\cdots\!91}{592503199688400}a^{6}+\frac{20\!\cdots\!01}{28214438080400}a^{5}-\frac{65\!\cdots\!57}{888754799532600}a^{4}+\frac{68\!\cdots\!21}{296251599844200}a^{3}+\frac{18\!\cdots\!43}{59250319968840}a^{2}-\frac{50855219295721}{5290207140075}a-\frac{3715152151199}{480927921825}$, $\frac{152860106653}{53\!\cdots\!00}a^{17}-\frac{692128655063}{26\!\cdots\!00}a^{16}+\frac{277960398601}{222188699883150}a^{15}-\frac{17279394758719}{53\!\cdots\!00}a^{14}+\frac{22531931115377}{53\!\cdots\!00}a^{13}-\frac{2049121552}{4443773997663}a^{12}-\frac{1343018867143}{355501919813040}a^{11}+\frac{12919166240821}{17\!\cdots\!00}a^{10}+\frac{32592797227079}{888754799532600}a^{9}-\frac{15307679664241}{45577169206800}a^{8}+\frac{395365760858741}{355501919813040}a^{7}-\frac{62078806644143}{29625159984420}a^{6}+\frac{31\!\cdots\!77}{888754799532600}a^{5}-\frac{13\!\cdots\!89}{253929942723600}a^{4}+\frac{407416031084653}{98750533281400}a^{3}-\frac{14143955423021}{12343816660175}a^{2}+\frac{517307289379663}{296251599844200}a+\frac{16253632376927}{13465981811100}$, $\frac{8643833521}{53\!\cdots\!00}a^{17}+\frac{73555947541}{17\!\cdots\!00}a^{16}-\frac{225344927039}{761789828170800}a^{15}+\frac{3675938153009}{26\!\cdots\!00}a^{14}-\frac{14074277947007}{53\!\cdots\!00}a^{13}+\frac{3987393444889}{17\!\cdots\!00}a^{12}+\frac{4527775668083}{888754799532600}a^{11}-\frac{23839212099067}{17\!\cdots\!00}a^{10}+\frac{35020690738349}{17\!\cdots\!00}a^{9}+\frac{104437332793687}{888754799532600}a^{8}-\frac{106810083210797}{253929942723600}a^{7}+\frac{245613155235397}{253929942723600}a^{6}-\frac{24\!\cdots\!83}{17\!\cdots\!00}a^{5}+\frac{464178785312597}{222188699883150}a^{4}-\frac{1787220955783}{37031449980525}a^{3}-\frac{23301296769173}{98750533281400}a^{2}+\frac{316530782231}{148125799922100}a-\frac{1504252263949}{13465981811100}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 8347574.07937 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 8347574.07937 \cdot 27}{6\cdot\sqrt{450283905890997363000000000000}}\cr\approx \mathstrut & 0.854374737569 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 45*x^16 - 126*x^15 + 189*x^14 - 27*x^13 - 516*x^12 + 1071*x^11 + 1557*x^10 - 14664*x^9 + 43227*x^8 - 82809*x^7 + 123129*x^6 - 113832*x^5 + 17064*x^4 + 45324*x^3 + 13500*x^2 + 8316*x + 4356)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 9*x^17 + 45*x^16 - 126*x^15 + 189*x^14 - 27*x^13 - 516*x^12 + 1071*x^11 + 1557*x^10 - 14664*x^9 + 43227*x^8 - 82809*x^7 + 123129*x^6 - 113832*x^5 + 17064*x^4 + 45324*x^3 + 13500*x^2 + 8316*x + 4356, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 9*x^17 + 45*x^16 - 126*x^15 + 189*x^14 - 27*x^13 - 516*x^12 + 1071*x^11 + 1557*x^10 - 14664*x^9 + 43227*x^8 - 82809*x^7 + 123129*x^6 - 113832*x^5 + 17064*x^4 + 45324*x^3 + 13500*x^2 + 8316*x + 4356);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 9*x^17 + 45*x^16 - 126*x^15 + 189*x^14 - 27*x^13 - 516*x^12 + 1071*x^11 + 1557*x^10 - 14664*x^9 + 43227*x^8 - 82809*x^7 + 123129*x^6 - 113832*x^5 + 17064*x^4 + 45324*x^3 + 13500*x^2 + 8316*x + 4356);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3:S_3$ (as 18T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 18
The 6 conjugacy class representatives for $C_3^2 : C_2$
Character table for $C_3^2 : C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.6075.1 x3, 3.1.108.1 x3, 3.1.24300.4 x3, 3.1.24300.3 x3, 6.0.110716875.1, 6.0.34992.1, 6.0.1771470000.2, 6.0.1771470000.1, 9.1.387420489000000.13 x9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 9 sibling: 9.1.387420489000000.13
Minimal sibling: 9.1.387420489000000.13

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.3.0.1}{3} }^{6}$ ${\href{/padicField/11.2.0.1}{2} }^{9}$ ${\href{/padicField/13.3.0.1}{3} }^{6}$ ${\href{/padicField/17.2.0.1}{2} }^{9}$ ${\href{/padicField/19.3.0.1}{3} }^{6}$ ${\href{/padicField/23.2.0.1}{2} }^{9}$ ${\href{/padicField/29.2.0.1}{2} }^{9}$ ${\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.3.0.1}{3} }^{6}$ ${\href{/padicField/41.2.0.1}{2} }^{9}$ ${\href{/padicField/43.1.0.1}{1} }^{18}$ ${\href{/padicField/47.2.0.1}{2} }^{9}$ ${\href{/padicField/53.2.0.1}{2} }^{9}$ ${\href{/padicField/59.2.0.1}{2} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
\(3\) Copy content Toggle raw display Deg $18$$18$$1$$37$
\(5\) Copy content Toggle raw display 5.6.4.1$x^{6} + 12 x^{5} + 54 x^{4} + 122 x^{3} + 168 x^{2} + 228 x + 233$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
5.6.4.1$x^{6} + 12 x^{5} + 54 x^{4} + 122 x^{3} + 168 x^{2} + 228 x + 233$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
5.6.4.1$x^{6} + 12 x^{5} + 54 x^{4} + 122 x^{3} + 168 x^{2} + 228 x + 233$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$