Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 126 x^{15} + 189 x^{14} - 27 x^{13} - 516 x^{12} + 1071 x^{11} + 1557 x^{10} - 14664 x^{9} + 43227 x^{8} - 82809 x^{7} + 123129 x^{6} - 113832 x^{5} + 17064 x^{4} + 45324 x^{3} + 13500 x^{2} + 8316 x + 4356 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-450283905890997363000000000000=-\,2^{12}\cdot 3^{37}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{45} a^{9} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{15} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{15}$, $\frac{1}{45} a^{10} + \frac{1}{5} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a - \frac{1}{5}$, $\frac{1}{45} a^{11} + \frac{4}{15} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{7}{15} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{450} a^{12} + \frac{2}{225} a^{11} - \frac{2}{225} a^{10} - \frac{1}{90} a^{9} - \frac{2}{25} a^{7} + \frac{7}{150} a^{6} + \frac{14}{75} a^{5} - \frac{7}{15} a^{4} + \frac{1}{30} a^{3} - \frac{4}{75} a^{2} - \frac{11}{75} a - \frac{4}{75}$, $\frac{1}{2700} a^{13} - \frac{1}{900} a^{12} + \frac{1}{150} a^{11} - \frac{1}{100} a^{10} + \frac{1}{180} a^{9} - \frac{2}{25} a^{8} - \frac{59}{900} a^{7} + \frac{1}{100} a^{6} - \frac{31}{150} a^{5} + \frac{53}{180} a^{4} + \frac{49}{300} a^{3} - \frac{6}{25} a^{2} + \frac{17}{50} a + \frac{31}{150}$, $\frac{1}{2700} a^{14} - \frac{1}{900} a^{12} - \frac{7}{900} a^{11} - \frac{1}{150} a^{10} + \frac{1}{300} a^{9} + \frac{17}{180} a^{8} - \frac{2}{75} a^{7} - \frac{7}{100} a^{6} - \frac{89}{900} a^{5} - \frac{21}{50} a^{4} + \frac{7}{60} a^{3} + \frac{19}{150} a^{2} - \frac{2}{25} a + \frac{13}{50}$, $\frac{1}{491400} a^{15} + \frac{43}{491400} a^{14} + \frac{1}{10920} a^{13} + \frac{1}{20475} a^{12} + \frac{193}{32760} a^{11} + \frac{1669}{163800} a^{10} - \frac{59}{6825} a^{9} - \frac{1513}{32760} a^{8} - \frac{4621}{54600} a^{7} - \frac{493}{8190} a^{6} + \frac{81691}{163800} a^{5} + \frac{1129}{4200} a^{4} - \frac{125}{312} a^{3} - \frac{5387}{27300} a^{2} + \frac{577}{5460} a - \frac{5489}{27300}$, $\frac{1}{982800} a^{16} - \frac{1}{982800} a^{15} - \frac{1}{36400} a^{14} - \frac{17}{122850} a^{13} - \frac{23}{65520} a^{12} + \frac{599}{109200} a^{11} + \frac{67}{8190} a^{10} - \frac{389}{36400} a^{9} - \frac{281}{5200} a^{8} - \frac{269}{5460} a^{7} + \frac{19763}{327600} a^{6} + \frac{10513}{21840} a^{5} + \frac{19031}{327600} a^{4} + \frac{281}{18200} a^{3} - \frac{1769}{3640} a^{2} + \frac{4633}{18200} a + \frac{5597}{13650}$, $\frac{1}{5332528797195600} a^{17} + \frac{1810860823}{5332528797195600} a^{16} + \frac{1893923791}{5332528797195600} a^{15} + \frac{21553673837}{2666264398597800} a^{14} - \frac{24307891321}{152357965634160} a^{13} + \frac{343092561479}{592503199688400} a^{12} - \frac{4719475837261}{888754799532600} a^{11} - \frac{2705797562153}{253929942723600} a^{10} + \frac{4500814941499}{592503199688400} a^{9} + \frac{1134149756321}{25392994272360} a^{8} - \frac{7888085742499}{136731507620400} a^{7} + \frac{113580175230727}{1777509599065200} a^{6} - \frac{169809727697399}{1777509599065200} a^{5} + \frac{85301523097897}{444377399766300} a^{4} + \frac{14558309510611}{29625159984420} a^{3} - \frac{2330361425611}{14107219040200} a^{2} - \frac{15192830396421}{49375266640700} a + \frac{903761133139}{1923711687300}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2330596735}{30471593126832} a^{17} + \frac{8337083525}{11850063993768} a^{16} - \frac{42205415257}{11850063993768} a^{15} + \frac{242116368005}{23700127987536} a^{14} - \frac{1137037775285}{71100383962608} a^{13} + \frac{2885146570}{634824856809} a^{12} + \frac{2705471032685}{71100383962608} a^{11} - \frac{6092379038987}{71100383962608} a^{10} - \frac{42410881345}{390661450344} a^{9} + \frac{81252868483685}{71100383962608} a^{8} - \frac{11756117569715}{3385732569648} a^{7} + \frac{40567998752245}{5925031996884} a^{6} - \frac{5198272583684}{493752666407} a^{5} + \frac{251078784934655}{23700127987536} a^{4} - \frac{10210731386615}{2962515998442} a^{3} - \frac{3430466263275}{1975010665628} a^{2} - \frac{2955645331495}{1692866284824} a - \frac{816500707}{134659818111} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8347574.07937 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.6075.1 x3, 3.1.108.1 x3, 3.1.24300.4 x3, 3.1.24300.3 x3, 6.0.110716875.1, 6.0.34992.1, 6.0.1771470000.2, 6.0.1771470000.1, 9.1.387420489000000.13 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |