Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 132 x^{15} + 234 x^{14} - 198 x^{13} - 42 x^{12} + 36 x^{11} + 1791 x^{10} - 7439 x^{9} + 17235 x^{8} - 30852 x^{7} + 45834 x^{6} - 41490 x^{5} - 1530 x^{4} + 32460 x^{3} - 9675 x^{2} - 2925 x + 4225 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-450283905890997363000000000000=-\,2^{12}\cdot 3^{37}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{36} a^{9} + \frac{1}{6} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{4} a - \frac{4}{9}$, $\frac{1}{72} a^{10} - \frac{1}{72} a^{9} - \frac{1}{8} a^{8} + \frac{1}{12} a^{7} + \frac{1}{24} a^{6} - \frac{1}{8} a^{5} + \frac{5}{24} a^{4} + \frac{1}{6} a^{3} - \frac{3}{8} a^{2} + \frac{29}{72} a - \frac{11}{72}$, $\frac{1}{72} a^{11} - \frac{1}{24} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{3} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{1}{36} a^{2} - \frac{3}{8}$, $\frac{1}{1872} a^{12} - \frac{1}{156} a^{11} + \frac{1}{1872} a^{10} + \frac{7}{936} a^{9} - \frac{5}{104} a^{8} + \frac{19}{78} a^{7} - \frac{49}{208} a^{6} + \frac{17}{52} a^{5} - \frac{119}{312} a^{4} - \frac{227}{936} a^{3} + \frac{139}{624} a^{2} + \frac{35}{117} a - \frac{5}{144}$, $\frac{1}{5616} a^{13} - \frac{1}{5616} a^{12} - \frac{1}{208} a^{11} - \frac{1}{5616} a^{10} - \frac{7}{2808} a^{9} + \frac{3}{52} a^{8} - \frac{133}{624} a^{7} - \frac{29}{624} a^{6} + \frac{3}{52} a^{5} + \frac{799}{2808} a^{4} - \frac{2705}{5616} a^{3} + \frac{51}{208} a^{2} - \frac{275}{5616} a - \frac{49}{432}$, $\frac{1}{5616} a^{14} - \frac{1}{5616} a^{12} + \frac{19}{2808} a^{11} + \frac{1}{468} a^{10} + \frac{4}{351} a^{9} - \frac{29}{624} a^{8} + \frac{3}{52} a^{7} - \frac{1}{39} a^{6} - \frac{137}{2808} a^{5} - \frac{1}{208} a^{4} + \frac{55}{1404} a^{3} + \frac{1909}{5616} a^{2} - \frac{55}{117} a + \frac{49}{216}$, $\frac{1}{196560} a^{15} + \frac{1}{196560} a^{14} + \frac{1}{19656} a^{13} - \frac{37}{196560} a^{12} + \frac{17}{28080} a^{11} + \frac{391}{98280} a^{10} - \frac{619}{65520} a^{9} - \frac{241}{21840} a^{8} + \frac{3919}{21840} a^{7} + \frac{13183}{98280} a^{6} - \frac{11177}{39312} a^{5} + \frac{21803}{196560} a^{4} - \frac{39643}{98280} a^{3} - \frac{3931}{39312} a^{2} + \frac{10349}{39312} a - \frac{23}{126}$, $\frac{1}{982800} a^{16} + \frac{1}{982800} a^{15} + \frac{1}{12285} a^{14} - \frac{1}{491400} a^{13} + \frac{17}{140400} a^{12} + \frac{3967}{982800} a^{11} - \frac{6407}{982800} a^{10} - \frac{4363}{327600} a^{9} - \frac{4271}{109200} a^{8} - \frac{51439}{982800} a^{7} - \frac{925}{39312} a^{6} - \frac{396797}{982800} a^{5} + \frac{191497}{491400} a^{4} - \frac{475}{19656} a^{3} - \frac{941}{15120} a^{2} + \frac{32311}{196560} a - \frac{7}{72}$, $\frac{1}{148804765200} a^{17} - \frac{62329}{148804765200} a^{16} - \frac{1819}{4960158840} a^{15} + \frac{1394}{1328613975} a^{14} + \frac{59}{7570450} a^{13} - \frac{22649813}{148804765200} a^{12} + \frac{20961919}{12400397100} a^{11} - \frac{909619169}{148804765200} a^{10} + \frac{1549519721}{148804765200} a^{9} + \frac{27638809}{5131198800} a^{8} - \frac{44927153}{212578236} a^{7} + \frac{6852511}{49601588400} a^{6} - \frac{28318617973}{74402382600} a^{5} - \frac{94312601}{236198040} a^{4} + \frac{1565183149}{7440238260} a^{3} + \frac{2059943677}{9920317680} a^{2} - \frac{2078291809}{5952190608} a - \frac{14458441}{57232602}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{250282}{9300297825} a^{17} - \frac{1520189}{9300297825} a^{16} + \frac{4653784}{9300297825} a^{15} + \frac{393376}{9300297825} a^{14} - \frac{129932}{28616301} a^{13} + \frac{27733556}{1860059565} a^{12} - \frac{200858576}{9300297825} a^{11} + \frac{31969864}{9300297825} a^{10} + \frac{437389606}{9300297825} a^{9} - \frac{20065646}{320699925} a^{8} - \frac{181120048}{1328613975} a^{7} + \frac{5721582416}{9300297825} a^{6} - \frac{2771723516}{1860059565} a^{5} + \frac{28044774536}{9300297825} a^{4} - \frac{1601341936}{372011913} a^{3} + \frac{838196936}{372011913} a^{2} + \frac{2619999154}{1860059565} a - \frac{1336363}{4088043} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20331620.6317 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.24300.1 x3, 3.1.972.1 x3, 3.1.24300.4 x3, 3.1.675.1 x3, 6.0.1771470000.3, 6.0.2834352.1, 6.0.1771470000.2, 6.0.1366875.1, 9.1.387420489000000.14 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |