/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 - 9*x^17 + 45*x^16 - 150*x^15 + 369*x^14 - 711*x^13 + 1200*x^12 - 1989*x^11 + 2601*x^10 - 1364*x^9 - 3177*x^8 + 9243*x^7 - 10983*x^6 + 5760*x^5 + 3600*x^4 - 9228*x^3 + 9036*x^2 - 4788*x + 1444, 18, 4, [0, 9], -450283905890997363000000000000, [2, 3, 5], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, 1/9*a^9 - 1/3*a^6 - 1/3*a^3 + 2/9, 1/9*a^10 - 1/3*a^7 - 1/3*a^4 + 2/9*a, 1/9*a^11 - 1/3*a^8 - 1/3*a^5 + 2/9*a^2, 1/126*a^12 - 1/21*a^11 - 1/126*a^9 - 2/7*a^8 - 5/14*a^6 + 3/7*a^5 + 2/7*a^4 + 59/126*a^3 - 2/21*a^2 - 2/7*a + 11/63, 1/756*a^13 - 1/756*a^12 - 5/126*a^11 + 41/756*a^10 + 1/756*a^9 - 5/21*a^8 - 5/84*a^7 + 37/84*a^6 + 17/42*a^5 - 13/756*a^4 + 31/756*a^3 + 13/63*a^2 + 89/378*a - 29/378, 1/756*a^14 - 1/756*a^12 - 1/756*a^11 - 1/18*a^10 - 41/756*a^9 - 11/28*a^8 - 2/7*a^7 + 11/28*a^6 - 103/756*a^5 - 3/14*a^4 - 59/756*a^3 + 155/378*a^2 - 31/63*a + 13/54, 1/143640*a^15 + 13/47880*a^14 - 41/143640*a^13 + 11/23940*a^12 + 2453/47880*a^11 + 2057/143640*a^10 + 65/2052*a^9 - 3659/15960*a^8 + 845/3192*a^7 - 21683/71820*a^6 - 11677/47880*a^5 + 53723/143640*a^4 - 1039/47880*a^3 + 1229/23940*a^2 - 30727/71820*a - 523/3780, 1/1436400*a^16 + 1/478800*a^15 + 43/95760*a^14 - 58/89775*a^13 - 211/205200*a^12 - 23339/478800*a^11 + 4/75*a^10 - 70571/1436400*a^9 + 53299/159600*a^8 - 43129/359100*a^7 - 18869/95760*a^6 - 136217/478800*a^5 + 1411/3024*a^4 - 1459/5400*a^3 + 29557/239400*a^2 + 317/760*a - 503/9450, 1/33037200*a^17 + 1/5506200*a^16 - 13/16518600*a^15 + 14387/33037200*a^14 + 2017/4719600*a^13 + 4892/2064825*a^12 - 384421/11012400*a^11 + 46793/33037200*a^10 + 1711/41400*a^9 + 10099337/33037200*a^8 - 213607/478800*a^7 - 2911519/8259300*a^6 - 1717637/8259300*a^5 - 15804559/33037200*a^4 + 477101/1651860*a^3 - 947747/2753100*a^2 - 950839/2359800*a - 3769/10350], 0, 27, [3, 3, 3], 1, [ (2357)/(869400)*a^(17) - (18053)/(943920)*a^(16) + (140579)/(1738800)*a^(15) - (816947)/(3670800)*a^(14) + (1894589)/(4129650)*a^(13) - (24889001)/(33037200)*a^(12) + (41235539)/(33037200)*a^(11) - (294782)/(137655)*a^(10) + (16626823)/(11012400)*a^(9) + (56440331)/(33037200)*a^(8) - (2289211)/(359100)*a^(7) + (295032649)/(33037200)*a^(6) - (15242593)/(3670800)*a^(5) - (7781359)/(33037200)*a^(4) + (36547603)/(4129650)*a^(3) - (104780143)/(16518600)*a^(2) + (25367159)/(5506200)*a + (78161)/(144900) , (223)/(458850)*a^(17) - (107039)/(8259300)*a^(16) + (714137)/(8259300)*a^(15) - (727178)/(2064825)*a^(14) + (12001)/(12420)*a^(13) - (5417017)/(2753100)*a^(12) + (13240957)/(4129650)*a^(11) - (4727413)/(917700)*a^(10) + (2817145)/(330372)*a^(9) - (297869)/(45885)*a^(8) - (3030203)/(359100)*a^(7) + (245306671)/(8259300)*a^(6) - (4126669)/(108675)*a^(5) + (56554667)/(4129650)*a^(4) + (10066696)/(688275)*a^(3) - (9806369)/(294975)*a^(2) + (5505751)/(229425)*a - (164602)/(15525) , (2549)/(235980)*a^(17) - (58283)/(1321488)*a^(16) + (427607)/(6607440)*a^(15) + (1725749)/(6607440)*a^(14) - (627166)/(412965)*a^(13) + (3828509)/(943920)*a^(12) - (43570777)/(6607440)*a^(11) + (786028)/(82593)*a^(10) - (165043267)/(6607440)*a^(9) + (234527707)/(6607440)*a^(8) + (102833)/(71820)*a^(7) - (522402827)/(6607440)*a^(6) + (921796681)/(6607440)*a^(5) - (470461463)/(6607440)*a^(4) - (94762561)/(3303720)*a^(3) + (52150397)/(471960)*a^(2) - (41128933)/(471960)*a + (912424)/(21735) , (48193)/(6607440)*a^(17) - (799)/(11799)*a^(16) + (140908)/(412965)*a^(15) - (7488359)/(6607440)*a^(14) + (18053251)/(6607440)*a^(13) - (16719769)/(3303720)*a^(12) + (53684347)/(6607440)*a^(11) - (17418439)/(1321488)*a^(10) + (28248313)/(1651860)*a^(9) - (36344557)/(6607440)*a^(8) - (9476177)/(287280)*a^(7) + (251776411)/(3303720)*a^(6) - (235219043)/(3303720)*a^(5) + (42943463)/(6607440)*a^(4) + (14525459)/(235980)*a^(3) - (29052343)/(412965)*a^(2) + (119409301)/(3303720)*a - (155389)/(21735) , (14699)/(3303720)*a^(17) - (120991)/(3303720)*a^(16) + (549671)/(3303720)*a^(15) - (814901)/(1651860)*a^(14) + (183599)/(173880)*a^(13) - (5772097)/(3303720)*a^(12) + (4487809)/(1651860)*a^(11) - (15365473)/(3303720)*a^(10) + (15459347)/(3303720)*a^(9) + (5331299)/(1651860)*a^(8) - (2435539)/(143640)*a^(7) + (10822843)/(471960)*a^(6) - (34220687)/(3303720)*a^(5) - (14234533)/(1651860)*a^(4) + (1642258)/(82593)*a^(3) - (24053623)/(1651860)*a^(2) + (2695292)/(412965)*a + (28933)/(43470) , (146063)/(33037200)*a^(17) - (59761)/(1321488)*a^(16) + (7951613)/(33037200)*a^(15) - (13948157)/(16518600)*a^(14) + (70592021)/(33037200)*a^(13) - (137007373)/(33037200)*a^(12) + (112371361)/(16518600)*a^(11) - (72602489)/(6607440)*a^(10) + (506353427)/(33037200)*a^(9) - (144044401)/(16518600)*a^(8) - (4269421)/(205200)*a^(7) + (289810351)/(4719600)*a^(6) - (121676249)/(1738800)*a^(5) + (46595518)/(2064825)*a^(4) + (35910269)/(869400)*a^(3) - (1096784659)/(16518600)*a^(2) + (352355743)/(8259300)*a - (200582)/(15525) , (426203)/(33037200)*a^(17) - (87961)/(734160)*a^(16) + (19409753)/(33037200)*a^(15) - (10424149)/(5506200)*a^(14) + (145177801)/(33037200)*a^(13) - (9639319)/(1223600)*a^(12) + (10898249)/(869400)*a^(11) - (138396197)/(6607440)*a^(10) + (871919107)/(33037200)*a^(9) - (32487271)/(16518600)*a^(8) - (9416063)/(159600)*a^(7) + (3633557257)/(33037200)*a^(6) - (141112231)/(1573200)*a^(5) + (3967088)/(2064825)*a^(4) + (140016269)/(1835400)*a^(3) - (1566339779)/(16518600)*a^(2) + (472755223)/(8259300)*a - (3928823)/(217350) , (67099)/(3670800)*a^(17) - (510497)/(3303720)*a^(16) + (987059)/(1376550)*a^(15) - (10316819)/(4719600)*a^(14) + (159794147)/(33037200)*a^(13) - (905384)/(108675)*a^(12) + (437393309)/(33037200)*a^(11) - (49516477)/(2202480)*a^(10) + (409428667)/(16518600)*a^(9) + (8619203)/(1223600)*a^(8) - (100002689)/(1436400)*a^(7) + (305374547)/(2753100)*a^(6) - (1210156091)/(16518600)*a^(5) - (476917379)/(33037200)*a^(4) + (1380005857)/(16518600)*a^(3) - (355281397)/(4129650)*a^(2) + (266884369)/(5506200)*a - (772631)/(62100) ], 13593134.6098, [[x^2 - x + 1, 1], [x^3 - 45, 3], [x^3 - 12, 3], [x^3 - 20, 3], [x^3 - 30, 3], [x^6 + 75, 1], [x^6 + 12, 1], [x^6 - 9*x^4 - 20*x^3 + 147*x^2 - 240*x + 133, 1], [x^6 - 3*x^5 + 6*x^4 + 53*x^3 - 84*x^2 - 93*x + 961, 1], [x^9 - 3*x^6 + 33*x^3 - 1, 9]]]