Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 126 x^{15} + 189 x^{14} - 27 x^{13} - 216 x^{12} - 729 x^{11} + 3807 x^{10} - 5414 x^{9} - 423 x^{8} + 17991 x^{7} - 36621 x^{6} + 11718 x^{5} + 99414 x^{4} - 188676 x^{3} + 121500 x^{2} + 11016 x + 1156 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-450283905890997363000000000000=-\,2^{12}\cdot 3^{37}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{45} a^{9} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{7}{45}$, $\frac{1}{45} a^{10} + \frac{1}{5} a^{5} + \frac{4}{9} a - \frac{1}{5}$, $\frac{1}{45} a^{11} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{11}{45} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{450} a^{12} + \frac{2}{225} a^{11} - \frac{2}{225} a^{10} - \frac{1}{90} a^{9} - \frac{2}{25} a^{7} - \frac{1}{50} a^{6} - \frac{7}{25} a^{5} - \frac{1}{5} a^{4} - \frac{1}{18} a^{3} - \frac{77}{225} a^{2} - \frac{13}{225} a - \frac{77}{225}$, $\frac{1}{1350} a^{13} - \frac{1}{1350} a^{12} + \frac{1}{225} a^{11} + \frac{1}{270} a^{10} - \frac{1}{270} a^{9} + \frac{1}{25} a^{8} - \frac{1}{150} a^{7} + \frac{11}{150} a^{6} + \frac{1}{5} a^{5} - \frac{77}{270} a^{4} - \frac{659}{1350} a^{3} + \frac{74}{225} a^{2} + \frac{203}{675} a - \frac{64}{135}$, $\frac{1}{1350} a^{14} - \frac{1}{1350} a^{12} - \frac{13}{1350} a^{11} - \frac{1}{225} a^{10} - \frac{11}{1350} a^{9} + \frac{1}{30} a^{8} + \frac{2}{75} a^{7} - \frac{13}{150} a^{6} + \frac{641}{1350} a^{5} + \frac{17}{75} a^{4} + \frac{41}{270} a^{3} + \frac{77}{675} a^{2} - \frac{68}{225} a - \frac{83}{675}$, $\frac{1}{1350} a^{15} + \frac{1}{1350} a^{12} - \frac{1}{225} a^{10} - \frac{1}{270} a^{9} + \frac{1}{15} a^{8} - \frac{7}{75} a^{7} + \frac{13}{270} a^{6} + \frac{32}{75} a^{5} - \frac{2}{15} a^{4} - \frac{61}{135} a^{3} + \frac{2}{75} a^{2} + \frac{8}{45} a + \frac{62}{135}$, $\frac{1}{83700} a^{16} + \frac{1}{20925} a^{15} + \frac{23}{83700} a^{14} + \frac{1}{83700} a^{13} + \frac{1}{1674} a^{12} - \frac{629}{83700} a^{11} - \frac{623}{83700} a^{10} - \frac{8}{2325} a^{9} - \frac{203}{3100} a^{8} - \frac{1337}{16740} a^{7} + \frac{191}{20925} a^{6} + \frac{34363}{83700} a^{5} - \frac{6268}{20925} a^{4} + \frac{6233}{41850} a^{3} - \frac{763}{8370} a^{2} + \frac{4328}{20925} a + \frac{11}{2325}$, $\frac{1}{21822379695551790900} a^{17} - \frac{59536140920819}{10911189847775895450} a^{16} - \frac{356602764606103}{2424708855061310100} a^{15} - \frac{21177735745259}{2424708855061310100} a^{14} + \frac{2761515339976211}{10911189847775895450} a^{13} + \frac{21719463545146499}{21822379695551790900} a^{12} + \frac{24266015734430069}{21822379695551790900} a^{11} - \frac{15448502593837063}{1818531641295982575} a^{10} + \frac{57674122184656891}{21822379695551790900} a^{9} + \frac{843473418846015143}{21822379695551790900} a^{8} + \frac{441050773781179864}{5455594923887947725} a^{7} + \frac{77852395596481533}{808236285020436700} a^{6} - \frac{13302538200548913}{202059071255109175} a^{5} + \frac{2030771460769268936}{5455594923887947725} a^{4} - \frac{1393983382973593982}{5455594923887947725} a^{3} - \frac{637242093008258}{7039477321145739} a^{2} + \frac{151186901618937373}{1818531641295982575} a - \frac{66126465329720531}{320917348463996925}$
Class group and class number
$C_{3}\times C_{6}\times C_{6}$, which has order $108$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{16580722975945}{218223796955517909} a^{17} + \frac{616288653199925}{872895187822071636} a^{16} - \frac{1549449380180957}{436447593911035818} a^{15} + \frac{8822454428403755}{872895187822071636} a^{14} - \frac{13264872400894195}{872895187822071636} a^{13} + \frac{543259332915545}{218223796955517909} a^{12} + \frac{16120294174521395}{872895187822071636} a^{11} + \frac{49458692589293621}{872895187822071636} a^{10} - \frac{132822660357257615}{436447593911035818} a^{9} + \frac{379599875740379095}{872895187822071636} a^{8} + \frac{24401006559029995}{872895187822071636} a^{7} - \frac{617704859030346235}{436447593911035818} a^{6} + \frac{2629026047845200643}{872895187822071636} a^{5} - \frac{218289606409466330}{218223796955517909} a^{4} - \frac{3459436774271394085}{436447593911035818} a^{3} + \frac{6591770227628359775}{436447593911035818} a^{2} - \frac{2089576757630355020}{218223796955517909} a + \frac{54616452757346}{414086901243867} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2396291.4248 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.24300.1 x3, 3.1.24300.2 x3, 3.1.108.1 x3, 3.1.6075.2 x3, 6.0.1771470000.3, 6.0.1771470000.4, 6.0.34992.1, 6.0.110716875.2, 9.1.387420489000000.21 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |