Normalized defining polynomial
\( x^{18} - x^{17} + 12 x^{16} - 53 x^{15} + 113 x^{14} - 460 x^{13} + 1093 x^{12} - 2083 x^{11} + 5509 x^{10} - 8812 x^{9} + 14193 x^{8} - 28895 x^{7} + 29724 x^{6} - 50207 x^{5} + 69537 x^{4} - 45474 x^{3} + 104656 x^{2} - 28952 x + 81232 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-448842581157264283935546875=-\,5^{12}\cdot 107^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{3}{32} a^{7} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{5}{32} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} + \frac{1}{32} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{32} a^{10} - \frac{3}{64} a^{9} + \frac{1}{64} a^{8} + \frac{5}{64} a^{7} - \frac{1}{32} a^{6} + \frac{15}{64} a^{5} + \frac{7}{64} a^{4} - \frac{15}{64} a^{3} - \frac{7}{16} a^{2} - \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{64} a^{7} - \frac{7}{64} a^{6} + \frac{1}{32} a^{5} - \frac{7}{32} a^{4} - \frac{1}{64} a^{3} + \frac{5}{16} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{320} a^{15} - \frac{1}{64} a^{12} + \frac{3}{320} a^{11} + \frac{9}{160} a^{10} - \frac{1}{16} a^{9} + \frac{1}{64} a^{8} + \frac{13}{320} a^{7} + \frac{13}{160} a^{6} - \frac{31}{160} a^{5} + \frac{7}{64} a^{4} + \frac{7}{40} a^{3} - \frac{7}{20} a^{2} + \frac{11}{40} a + \frac{3}{10}$, $\frac{1}{2560} a^{16} + \frac{1}{1280} a^{15} + \frac{3}{512} a^{14} + \frac{1}{256} a^{13} + \frac{9}{1280} a^{12} + \frac{1}{640} a^{11} - \frac{149}{2560} a^{10} - \frac{3}{256} a^{9} + \frac{29}{1280} a^{8} - \frac{27}{640} a^{7} - \frac{29}{512} a^{6} - \frac{287}{1280} a^{5} + \frac{261}{2560} a^{4} - \frac{35}{256} a^{3} - \frac{27}{320} a^{2} - \frac{11}{320} a - \frac{53}{160}$, $\frac{1}{3979551745304338470400} a^{17} - \frac{201627169810369649}{3979551745304338470400} a^{16} + \frac{3102059817893259969}{3979551745304338470400} a^{15} + \frac{17211528186644499}{9589281313986357760} a^{14} - \frac{2647238455738929373}{994887936326084617600} a^{13} - \frac{921869528043776497}{1989775872652169235200} a^{12} - \frac{7320219018078806941}{795910349060867694080} a^{11} + \frac{100901662607093801297}{3979551745304338470400} a^{10} + \frac{20732078413309098907}{994887936326084617600} a^{9} - \frac{7497078674192573379}{284253696093167033600} a^{8} + \frac{118467795981010189571}{3979551745304338470400} a^{7} + \frac{17764151762270369011}{568507392186334067200} a^{6} - \frac{473169974012666116457}{3979551745304338470400} a^{5} + \frac{126913973914704018197}{568507392186334067200} a^{4} - \frac{12112057507029797227}{79591034906086769408} a^{3} - \frac{723614968074624057}{35531712011645879200} a^{2} + \frac{160050721727742087591}{497443968163042308800} a - \frac{90107846111365312901}{248721984081521154400}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6601269.29293 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-107}) \), 3.1.107.1 x3, 6.0.1225043.1, 9.1.2048118765625.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $107$ | 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |