Normalized defining polynomial
\( x^{18} + 684 x^{16} - 48 x^{15} + 194940 x^{14} - 27360 x^{13} + 34077768 x^{12} - 6238080 x^{11} + \cdots + 12\!\cdots\!44 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-44402766688238530812346229902570152786470217145543488433324722627805452435456\)
\(\medspace = -\,2^{27}\cdot 3^{38}\cdot 2287^{15}\)
|
| |
| Root discriminant: | \($18\,121$.30\) |
| |
| Galois root discriminant: | $2^{3/2}3^{13/6}2287^{5/6}\approx 19261.76954796617$ | ||
| Ramified primes: |
\(2\), \(3\), \(2287\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-4574}) \) | ||
| $\Aut(K/\Q)$: | $S_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-4574}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{18}a^{3}+\frac{1}{3}a-\frac{4}{9}$, $\frac{1}{36}a^{4}+\frac{1}{6}a^{2}-\frac{2}{9}a$, $\frac{1}{36}a^{5}-\frac{2}{9}a^{2}+\frac{1}{3}$, $\frac{1}{648}a^{6}-\frac{1}{108}a^{4}-\frac{2}{81}a^{3}-\frac{1}{9}a^{2}+\frac{2}{27}a+\frac{8}{81}$, $\frac{1}{1296}a^{7}+\frac{1}{108}a^{5}-\frac{1}{81}a^{4}-\frac{2}{27}a^{2}-\frac{19}{162}a+\frac{2}{9}$, $\frac{1}{7776}a^{8}+\frac{1}{3888}a^{7}+\frac{1}{1944}a^{6}+\frac{1}{972}a^{5}+\frac{1}{486}a^{4}-\frac{7}{486}a^{3}+\frac{29}{972}a^{2}-\frac{79}{486}a+\frac{38}{243}$, $\frac{1}{23328}a^{9}+\frac{1}{1944}a^{6}+\frac{1}{108}a^{5}-\frac{1}{108}a^{4}-\frac{7}{972}a^{3}-\frac{5}{27}a^{2}-\frac{7}{27}a-\frac{349}{729}$, $\frac{1}{139968}a^{10}-\frac{1}{69984}a^{9}+\frac{1}{11664}a^{7}-\frac{1}{5832}a^{6}-\frac{1}{108}a^{5}+\frac{65}{5832}a^{4}+\frac{43}{2916}a^{3}+\frac{1}{6}a^{2}+\frac{1649}{4374}a+\frac{781}{2187}$, $\frac{1}{139968}a^{11}+\frac{1}{69984}a^{9}-\frac{1}{23328}a^{8}-\frac{1}{3888}a^{7}-\frac{1}{2916}a^{6}+\frac{5}{5832}a^{5}-\frac{1}{486}a^{4}-\frac{1}{2916}a^{3}-\frac{41}{8748}a^{2}-\frac{47}{486}a+\frac{254}{2187}$, $\frac{1}{3841281792}a^{12}+\frac{107}{35567424}a^{11}-\frac{19}{640213632}a^{10}-\frac{6841}{480160224}a^{9}+\frac{923}{35567424}a^{8}+\frac{133}{26675568}a^{7}+\frac{34399}{160053408}a^{6}-\frac{24997}{4445928}a^{5}+\frac{309505}{26675568}a^{4}+\frac{143761}{60020028}a^{3}+\frac{530597}{4445928}a^{2}-\frac{1297945}{10003338}a+\frac{6826823}{30010014}$, $\frac{1}{23047690752}a^{13}-\frac{1}{11523845376}a^{12}-\frac{12791}{3841281792}a^{11}+\frac{115}{5761922688}a^{10}+\frac{111481}{5761922688}a^{9}-\frac{11081}{320106816}a^{8}+\frac{59743}{960320448}a^{7}+\frac{111449}{480160224}a^{6}+\frac{255461}{160053408}a^{5}-\frac{3158839}{720240336}a^{4}+\frac{10196759}{720240336}a^{3}-\frac{22089469}{120040056}a^{2}-\frac{57231595}{180060084}a+\frac{36302827}{90030042}$, $\frac{1}{46095381504}a^{14}+\frac{1}{23047690752}a^{12}-\frac{10903}{5761922688}a^{11}-\frac{5807}{3841281792}a^{10}+\frac{4051}{360120168}a^{9}+\frac{75517}{1920640896}a^{8}-\frac{20327}{80026704}a^{7}+\frac{644689}{960320448}a^{6}-\frac{8901203}{720240336}a^{5}+\frac{1905773}{160053408}a^{4}+\frac{1145333}{180060084}a^{3}-\frac{1993685}{45015021}a^{2}-\frac{2247521}{15005007}a+\frac{42463831}{90030042}$, $\frac{1}{414858433536}a^{15}-\frac{1}{69143072256}a^{13}+\frac{1}{12964326048}a^{12}+\frac{17131}{11523845376}a^{11}-\frac{4361}{8642884032}a^{10}+\frac{1031435}{51857304192}a^{9}+\frac{8467}{240080112}a^{8}+\frac{733115}{2880961344}a^{7}-\frac{1021619}{1620540756}a^{6}+\frac{320639}{480160224}a^{5}+\frac{5976617}{1080360504}a^{4}-\frac{44045893}{1620540756}a^{3}+\frac{6597749}{90030042}a^{2}-\frac{46223783}{135045063}a+\frac{25612618}{405135189}$, $\frac{1}{56\cdots 24}a^{16}+\frac{51\cdots 23}{70\cdots 28}a^{15}-\frac{22\cdots 99}{23\cdots 76}a^{14}+\frac{16\cdots 09}{88\cdots 16}a^{13}-\frac{18\cdots 97}{35\cdots 64}a^{12}-\frac{13\cdots 45}{29\cdots 72}a^{11}+\frac{41\cdots 61}{35\cdots 64}a^{10}+\frac{80\cdots 19}{17\cdots 32}a^{9}-\frac{74\cdots 09}{19\cdots 48}a^{8}+\frac{15\cdots 05}{44\cdots 08}a^{7}+\frac{83\cdots 87}{44\cdots 08}a^{6}-\frac{95\cdots 21}{18\cdots 42}a^{5}+\frac{70\cdots 21}{88\cdots 16}a^{4}-\frac{10\cdots 33}{22\cdots 04}a^{3}+\frac{13\cdots 25}{73\cdots 68}a^{2}+\frac{27\cdots 87}{55\cdots 26}a-\frac{72\cdots 44}{27\cdots 63}$, $\frac{1}{63\cdots 28}a^{17}-\frac{15589}{31\cdots 64}a^{16}+\frac{20\cdots 97}{19\cdots 04}a^{15}-\frac{22\cdots 41}{49\cdots 76}a^{14}+\frac{21\cdots 59}{15\cdots 32}a^{13}-\frac{25\cdots 11}{79\cdots 16}a^{12}+\frac{32\cdots 23}{79\cdots 16}a^{11}+\frac{63\cdots 77}{39\cdots 08}a^{10}-\frac{33\cdots 31}{39\cdots 08}a^{9}+\frac{74\cdots 55}{19\cdots 04}a^{8}+\frac{30\cdots 83}{19\cdots 04}a^{7}+\frac{14\cdots 37}{99\cdots 52}a^{6}+\frac{15\cdots 85}{61\cdots 72}a^{5}+\frac{10\cdots 11}{12\cdots 44}a^{4}-\frac{46\cdots 09}{49\cdots 76}a^{3}+\frac{50\cdots 73}{24\cdots 88}a^{2}+\frac{43\cdots 11}{12\cdots 44}a-\frac{10\cdots 95}{61\cdots 72}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot R \cdot h}{2\cdot\sqrt{44402766688238530812346229902570152786470217145543488433324722627805452435456}}\cr\mathstrut & \text{
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-4574}) \), 3.1.1270979667.1, 3.1.1481976.3 x3, 6.0.1891530424807441634889216.1, 6.0.40182642410282496.2, 9.1.194731833464812587366907938019256832.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | 6.2.5674591274422324904667648.2 |
| Degree 9 sibling: | 9.1.194731833464812587366907938019256832.1 |
| Degree 12 sibling: | deg 12 |
| Degree 18 siblings: | deg 18, 18.0.113761460893702510484735982000599907732061184340694743130306972736028672.2 |
| Minimal sibling: | 6.2.5674591274422324904667648.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{9}$ | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{6}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{9}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(3\)
| 3.1.9.19c2.6 | $x^{9} + 6 x^{6} + 18 x^{2} + 12$ | $9$ | $1$ | $19$ | $S_3\times C_3$ | $$[2, \frac{5}{2}]_{2}$$ |
| 3.1.9.19c2.6 | $x^{9} + 6 x^{6} + 18 x^{2} + 12$ | $9$ | $1$ | $19$ | $S_3\times C_3$ | $$[2, \frac{5}{2}]_{2}$$ | |
|
\(2287\)
| Deg $6$ | $6$ | $1$ | $5$ | |||
| Deg $6$ | $6$ | $1$ | $5$ | ||||
| Deg $6$ | $6$ | $1$ | $5$ |