Normalized defining polynomial
\( x^{18} - 7 x^{17} + 174 x^{16} - 962 x^{15} + 13779 x^{14} - 64155 x^{13} + 676338 x^{12} - 2722651 x^{11} + 22786278 x^{10} - 79178651 x^{9} + 540532502 x^{8} - 1583274847 x^{7} + 8881121966 x^{6} - 20860733787 x^{5} + 95605863343 x^{4} - 162811998196 x^{3} + 597897722246 x^{2} - 567101046533 x + 1602731119741 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4424130270896887308908712516757313137831936=-\,2^{12}\cdot 37^{14}\cdot 79^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $234.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{17} - \frac{1458280310509708520142766575559052850054818821654099931027003293548878}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{16} + \frac{1492987330158135323489143142205624829799277728229294078294265717888867}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{15} - \frac{409829051798248383405642533709867778136854416500975980543726471920}{6144572201358873121311270255285376974730114563959257233782878438609} a^{14} + \frac{1361730991291646460737205027947283268650130849570979419150496998288891}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{13} + \frac{833789445781052207411747619685915859842797051302076757254299293768745}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{12} + \frac{1277107921346783609358996690591981311586010998340880875203508929318613}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{11} - \frac{1258212712265965924462798932352904915303187514799467516661402385357983}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{10} + \frac{1389708065180441766931002325299126413792767215920824856954281508243935}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{9} + \frac{1325815653781864949311678673173619139128547864901998211092011693161577}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{8} + \frac{114485979622359586070510422168199207516176953371474676082063005151601}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{7} + \frac{741178161570522377776216291597436302159362001446161250411031124384978}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{6} + \frac{118089084473789295272621065112908905690436533627837378222542737424899}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{5} + \frac{1082372986331197269234314281067678064406921381759248900988969357794181}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{4} - \frac{311012739108002245497732733258904933527225847646987208958224861256297}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{3} - \frac{642973447307365522089658560108645726712919960133900882159837228744167}{3361080994143303597357264829641101205177372666485713706879234505919123} a^{2} - \frac{125165110508846621133555553248321247175588510743005053524403059103955}{3361080994143303597357264829641101205177372666485713706879234505919123} a + \frac{36107094632566290079390407393043308935994678776164019526160765440303}{3361080994143303597357264829641101205177372666485713706879234505919123}$
Class group and class number
$C_{6}\times C_{6}\times C_{2997540}$, which has order $107911440$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-79}) \), 3.3.1369.1, 3.3.148.1, 6.0.10799526256.4, 6.0.924034465279.1, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $79$ | 79.6.3.2 | $x^{6} - 6241 x^{2} + 1972156$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 79.12.6.1 | $x^{12} + 5916468 x^{6} - 3077056399 x^{2} + 8751148398756$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |