Normalized defining polynomial
\( x^{18} - 6 x^{17} + 29 x^{16} - 102 x^{15} + 336 x^{14} - 890 x^{13} + 2170 x^{12} - 4566 x^{11} + 9356 x^{10} - 15604 x^{9} + 22168 x^{8} - 24046 x^{7} + 21992 x^{6} - 15918 x^{5} + 17462 x^{4} - 15366 x^{3} + 13571 x^{2} - 3898 x + 6053 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-442064923298304690829165330432=-\,2^{26}\cdot 37^{6}\cdot 13693^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 13693$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{181938392513759059517203873653833223701} a^{17} - \frac{1241896698963033975757523657172300441}{181938392513759059517203873653833223701} a^{16} + \frac{11663505646429518546114622685927540029}{181938392513759059517203873653833223701} a^{15} - \frac{77333461258358538408038096607469667653}{181938392513759059517203873653833223701} a^{14} + \frac{85740771410986696492422771156403296723}{181938392513759059517203873653833223701} a^{13} + \frac{14245555245954485259906639942715107769}{181938392513759059517203873653833223701} a^{12} - \frac{85653659305271701487182085668205705647}{181938392513759059517203873653833223701} a^{11} - \frac{33405802924879789131635493969408843032}{181938392513759059517203873653833223701} a^{10} - \frac{37315111684819389611789990534305534404}{181938392513759059517203873653833223701} a^{9} - \frac{2355559494736324706670150196606025363}{181938392513759059517203873653833223701} a^{8} + \frac{80205115319805659515014374282299200709}{181938392513759059517203873653833223701} a^{7} - \frac{30866902926101379503969230686815652889}{181938392513759059517203873653833223701} a^{6} - \frac{45066007334369240081300986566928428716}{181938392513759059517203873653833223701} a^{5} - \frac{17377269849208622382529505734524359119}{181938392513759059517203873653833223701} a^{4} + \frac{77282654446564425619247726002288741278}{181938392513759059517203873653833223701} a^{3} - \frac{80601008302497567024525284028849733023}{181938392513759059517203873653833223701} a^{2} + \frac{48536945753257403303621815465502841137}{181938392513759059517203873653833223701} a + \frac{69611305805439673953448761912252466831}{181938392513759059517203873653833223701}$
Class group and class number
$C_{2}\times C_{100}$, which has order $200$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 146523.090266 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n394 |
| Character table for t18n394 is not computed |
Intermediate fields
| 3.3.148.1, 6.0.4798903552.1, 9.9.177559431424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 13693 | Data not computed | ||||||