Normalized defining polynomial
\( x^{18} + 54 x^{16} - 16 x^{15} + 1980 x^{14} + 49888 x^{12} + 4800 x^{11} + 940608 x^{10} + 298064 x^{9} + 13801632 x^{8} + 6632928 x^{7} + 151261200 x^{6} + 90910848 x^{5} + 1241215776 x^{4} + 885349568 x^{3} + 6833853696 x^{2} + 3796985088 x + 17040056384 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4408339576964120838747979776000000000=-\,2^{33}\cdot 3^{18}\cdot 5^{9}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{4} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{8} a^{9}$, $\frac{1}{8} a^{10}$, $\frac{1}{8} a^{11}$, $\frac{1}{16} a^{12}$, $\frac{1}{16} a^{13}$, $\frac{1}{16} a^{14}$, $\frac{1}{32} a^{15}$, $\frac{1}{416} a^{16} + \frac{5}{416} a^{15} - \frac{3}{104} a^{14} + \frac{1}{208} a^{13} - \frac{3}{104} a^{12} - \frac{1}{52} a^{11} - \frac{5}{104} a^{10} + \frac{5}{104} a^{9} - \frac{3}{52} a^{8} - \frac{1}{26} a^{7} + \frac{3}{52} a^{6} + \frac{1}{13} a^{5} + \frac{1}{26} a^{4} - \frac{3}{26} a^{3} - \frac{4}{13} a^{2} - \frac{5}{13} a$, $\frac{1}{581870358363040840820703573873703375142709278953105696} a^{17} - \frac{101434144320984785004163378516785934007196111603713}{581870358363040840820703573873703375142709278953105696} a^{16} - \frac{3648529444148413165350944837708255944934184921671907}{290935179181520420410351786936851687571354639476552848} a^{15} + \frac{797483615334785147295549118619259203009803417401181}{36366897397690052551293973367106460946419329934569106} a^{14} - \frac{419003300437581101901011553946706517914943438763006}{18183448698845026275646986683553230473209664967284553} a^{13} - \frac{8924566690342344701922953771728772068606316189229983}{290935179181520420410351786936851687571354639476552848} a^{12} - \frac{41386113596101768219631257925307406058261817663171}{1398726822988078944280537437196402344093051151329581} a^{11} - \frac{1643244073779972411029267613112934775627438082119813}{145467589590760210205175893468425843785677319738276424} a^{10} - \frac{7467673328702749225893745825137425714635616428309313}{145467589590760210205175893468425843785677319738276424} a^{9} - \frac{5368361305485908786423256271180406342574233000224827}{72733794795380105102587946734212921892838659869138212} a^{8} - \frac{7838891404832973848843544782006308461221773741674711}{72733794795380105102587946734212921892838659869138212} a^{7} - \frac{13654311774300044865379044513774206319987647766887}{172354963970095035788123096526570904959333317225446} a^{6} + \frac{903829993753386433651871624582724714346844544520787}{36366897397690052551293973367106460946419329934569106} a^{5} + \frac{6746831047156058584414106133988472480216780612083017}{36366897397690052551293973367106460946419329934569106} a^{4} + \frac{2334558500987217759755200906947782165290596704868831}{18183448698845026275646986683553230473209664967284553} a^{3} - \frac{3646224711475022206166947807001680072043729980400245}{18183448698845026275646986683553230473209664967284553} a^{2} - \frac{4239478823625516984050119876930342948161588128285182}{18183448698845026275646986683553230473209664967284553} a - \frac{104599723995408627667978255078394527508698670853054}{1398726822988078944280537437196402344093051151329581}$
Class group and class number
$C_{6}\times C_{6}\times C_{11322}$, which has order $407592$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 296124.35954857944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), 3.3.756.1, \(\Q(\zeta_{7})^+\), 6.0.9144576000.34, 6.0.153664000.1, 9.9.1037426999616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |