Normalized defining polynomial
\( x^{18} - 3 x^{17} + 12 x^{16} - 18 x^{15} + 50 x^{14} - 32 x^{13} + 68 x^{12} + 39 x^{11} + 34 x^{10} + 127 x^{9} - 88 x^{8} + 148 x^{7} - x^{6} - 74 x^{5} + 96 x^{4} - 84 x^{3} + 41 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-439734536489990234375=-\,5^{12}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{35} a^{15} + \frac{3}{35} a^{14} - \frac{1}{5} a^{13} + \frac{17}{35} a^{12} - \frac{1}{7} a^{11} - \frac{12}{35} a^{10} + \frac{17}{35} a^{9} - \frac{1}{7} a^{8} - \frac{11}{35} a^{7} + \frac{12}{35} a^{6} + \frac{11}{35} a^{5} + \frac{12}{35} a^{4} - \frac{1}{7} a^{3} + \frac{3}{7} a^{2} + \frac{2}{35} a + \frac{8}{35}$, $\frac{1}{805} a^{16} - \frac{226}{805} a^{14} + \frac{178}{805} a^{13} - \frac{1}{5} a^{12} + \frac{108}{805} a^{11} - \frac{367}{805} a^{10} + \frac{37}{115} a^{9} + \frac{389}{805} a^{8} + \frac{79}{161} a^{7} - \frac{12}{161} a^{6} + \frac{27}{115} a^{5} + \frac{379}{805} a^{4} + \frac{62}{161} a^{3} + \frac{202}{805} a^{2} - \frac{348}{805} a + \frac{256}{805}$, $\frac{1}{20487978636895} a^{17} + \frac{11408352853}{20487978636895} a^{16} + \frac{117531612511}{20487978636895} a^{15} + \frac{5217227014691}{20487978636895} a^{14} - \frac{2696112146281}{20487978636895} a^{13} + \frac{7928697267144}{20487978636895} a^{12} - \frac{128678456811}{890781679865} a^{11} - \frac{8008372844716}{20487978636895} a^{10} - \frac{38969292511}{4097595727379} a^{9} + \frac{117662078001}{1205175213935} a^{8} + \frac{8459759982088}{20487978636895} a^{7} + \frac{5958019009368}{20487978636895} a^{6} - \frac{6094146051937}{20487978636895} a^{5} + \frac{9334120508241}{20487978636895} a^{4} + \frac{5044544428227}{20487978636895} a^{3} + \frac{23800987217}{172167887705} a^{2} - \frac{7934486794}{169322137495} a + \frac{9525912999989}{20487978636895}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 635.399863828 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.1.23.1 x3, 6.0.12167.1, 9.1.4372515625.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |