Normalized defining polynomial
\( x^{18} - x^{17} + 4 x^{16} - x^{15} + 12 x^{14} - 9 x^{13} + 12 x^{12} - 18 x^{11} + 26 x^{10} - 12 x^{9} - 4 x^{8} - 5 x^{7} + 31 x^{6} - 17 x^{5} - 3 x^{4} + 5 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-43564677551979246963=-\,3^{9}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{78} a^{15} - \frac{3}{26} a^{14} + \frac{3}{26} a^{13} - \frac{1}{78} a^{12} + \frac{6}{13} a^{11} - \frac{17}{78} a^{10} + \frac{35}{78} a^{9} + \frac{1}{26} a^{8} + \frac{1}{39} a^{7} + \frac{5}{39} a^{6} + \frac{35}{78} a^{5} + \frac{11}{78} a^{4} - \frac{8}{39} a^{3} - \frac{23}{78} a^{2} + \frac{7}{39} a - \frac{7}{78}$, $\frac{1}{858} a^{16} - \frac{2}{429} a^{15} - \frac{19}{143} a^{14} - \frac{4}{429} a^{13} + \frac{83}{858} a^{12} + \frac{397}{858} a^{11} + \frac{9}{143} a^{10} - \frac{70}{143} a^{9} - \frac{133}{286} a^{8} - \frac{185}{429} a^{7} - \frac{23}{78} a^{6} - \frac{37}{429} a^{5} - \frac{1}{2} a^{4} - \frac{11}{26} a^{3} + \frac{107}{858} a^{2} - \frac{145}{858} a - \frac{347}{858}$, $\frac{1}{1570998} a^{17} - \frac{7}{40282} a^{16} - \frac{8135}{1570998} a^{15} - \frac{156595}{1570998} a^{14} - \frac{2286}{20141} a^{13} + \frac{256579}{1570998} a^{12} - \frac{616127}{1570998} a^{11} + \frac{11575}{1570998} a^{10} + \frac{289771}{785499} a^{9} + \frac{177115}{785499} a^{8} + \frac{56867}{523666} a^{7} - \frac{122825}{523666} a^{6} - \frac{29609}{261833} a^{5} - \frac{69749}{142818} a^{4} - \frac{177217}{785499} a^{3} - \frac{170047}{1570998} a^{2} - \frac{254560}{785499} a + \frac{9201}{261833}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{16945}{142818} a^{17} - \frac{23327}{71409} a^{16} + \frac{36250}{71409} a^{15} - \frac{21461}{23803} a^{14} + \frac{47967}{47606} a^{13} - \frac{549617}{142818} a^{12} + \frac{26899}{23803} a^{11} - \frac{324175}{71409} a^{10} + \frac{753937}{142818} a^{9} - \frac{346456}{71409} a^{8} - \frac{106321}{142818} a^{7} - \frac{17395}{71409} a^{6} + \frac{814865}{142818} a^{5} - \frac{345281}{47606} a^{4} - \frac{194975}{142818} a^{3} - \frac{34673}{142818} a^{2} + \frac{95847}{47606} a - \frac{6029}{23803} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 527.323608131 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1083.1 x3, 3.3.361.1, 6.0.3518667.2, 6.0.9747.1 x2, 6.0.3518667.1, 9.3.1270238787.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.9747.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |