Normalized defining polynomial
\( x^{18} - x^{17} + 96 x^{16} - 96 x^{15} + 3896 x^{14} - 3896 x^{13} + 87021 x^{12} - 87021 x^{11} + 1167646 x^{10} - 1167646 x^{9} + 9658271 x^{8} - 9658271 x^{7} + 48845771 x^{6} - 48845771 x^{5} + 146814521 x^{4} - 146814521 x^{3} + 258142646 x^{2} - 258142646 x + 295252021 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4352961928683212902721499543224559=-\,3^{9}\cdot 7^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(399=3\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{399}(64,·)$, $\chi_{399}(1,·)$, $\chi_{399}(230,·)$, $\chi_{399}(398,·)$, $\chi_{399}(335,·)$, $\chi_{399}(146,·)$, $\chi_{399}(85,·)$, $\chi_{399}(356,·)$, $\chi_{399}(293,·)$, $\chi_{399}(358,·)$, $\chi_{399}(167,·)$, $\chi_{399}(232,·)$, $\chi_{399}(41,·)$, $\chi_{399}(106,·)$, $\chi_{399}(43,·)$, $\chi_{399}(169,·)$, $\chi_{399}(314,·)$, $\chi_{399}(253,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{64457461} a^{10} + \frac{10630121}{64457461} a^{9} + \frac{50}{64457461} a^{8} + \frac{27153218}{64457461} a^{7} + \frac{875}{64457461} a^{6} + \frac{20553504}{64457461} a^{5} + \frac{6250}{64457461} a^{4} + \frac{28242852}{64457461} a^{3} + \frac{15625}{64457461} a^{2} - \frac{22093183}{64457461} a + \frac{6250}{64457461}$, $\frac{1}{64457461} a^{11} + \frac{55}{64457461} a^{9} + \frac{11306856}{64457461} a^{8} + \frac{1100}{64457461} a^{7} + \frac{1072013}{64457461} a^{6} + \frac{9625}{64457461} a^{5} - \frac{18828568}{64457461} a^{4} + \frac{34375}{64457461} a^{3} - \frac{10856811}{64457461} a^{2} + \frac{34375}{64457461} a + \frac{17386041}{64457461}$, $\frac{1}{64457461} a^{12} + \frac{6767350}{64457461} a^{9} - \frac{1650}{64457461} a^{8} - \frac{9833374}{64457461} a^{7} - \frac{38500}{64457461} a^{6} + \frac{10963010}{64457461} a^{5} - \frac{309375}{64457461} a^{4} - \frac{17234607}{64457461} a^{3} - \frac{825000}{64457461} a^{2} + \frac{7819347}{64457461} a - \frac{343750}{64457461}$, $\frac{1}{64457461} a^{13} - \frac{1950}{64457461} a^{9} - \frac{25913569}{64457461} a^{8} - \frac{52000}{64457461} a^{7} + \frac{19618172}{64457461} a^{6} - \frac{511875}{64457461} a^{5} - \frac{29077691}{64457461} a^{4} - \frac{1950000}{64457461} a^{3} - \frac{21788363}{64457461} a^{2} - \frac{2031250}{64457461} a - \frac{11843084}{64457461}$, $\frac{1}{64457461} a^{14} + \frac{11977400}{64457461} a^{9} + \frac{45500}{64457461} a^{8} - \frac{15639670}{64457461} a^{7} + \frac{1194375}{64457461} a^{6} + \frac{22171828}{64457461} a^{5} + \frac{10237500}{64457461} a^{4} + \frac{5101343}{64457461} a^{3} + \frac{28437500}{64457461} a^{2} + \frac{28491475}{64457461} a + \frac{12187500}{64457461}$, $\frac{1}{64457461} a^{15} + \frac{56875}{64457461} a^{9} + \frac{30064940}{64457461} a^{8} + \frac{1706250}{64457461} a^{7} - \frac{15944490}{64457461} a^{6} + \frac{17915625}{64457461} a^{5} - \frac{18536436}{64457461} a^{4} + \frac{6636289}{64457461} a^{3} + \frac{1625758}{64457461} a^{2} + \frac{11714414}{64457461} a - \frac{23637779}{64457461}$, $\frac{1}{64457461} a^{16} - \frac{11540216}{64457461} a^{9} - \frac{1137500}{64457461} a^{8} - \frac{18910141}{64457461} a^{7} - \frac{31850000}{64457461} a^{6} + \frac{1436260}{64457461} a^{5} - \frac{26545156}{64457461} a^{4} - \frac{30653622}{64457461} a^{3} + \frac{25446993}{64457461} a^{2} - \frac{7599388}{64457461} a + \frac{31276016}{64457461}$, $\frac{1}{64457461} a^{17} - \frac{1487500}{64457461} a^{9} - \frac{22016490}{64457461} a^{8} + \frac{16857461}{64457461} a^{7} - \frac{20696117}{64457461} a^{6} - \frac{4965312}{64457461} a^{5} - \frac{32202481}{64457461} a^{4} + \frac{2096213}{64457461} a^{3} + \frac{20757195}{64457461} a^{2} - \frac{3750154}{64457461} a - \frac{1548859}{64457461}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6632}$, which has order $53056$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-399}) \), 3.3.361.1, 6.0.22931152839.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19 | Data not computed | ||||||