Normalized defining polynomial
\( x^{18} + 70 x^{16} - 4 x^{15} + 1925 x^{14} - 210 x^{13} + 27573 x^{12} - 4025 x^{11} + 230055 x^{10} - 36104 x^{9} + 1167950 x^{8} - 164045 x^{7} + 3604930 x^{6} - 360675 x^{5} + 6472620 x^{4} - 293353 x^{3} + 6075300 x^{2} + 2299968 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-43398229994269610052656606538315887=-\,7^{12}\cdot 17^{9}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 17, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{348} a^{14} - \frac{7}{174} a^{13} - \frac{2}{87} a^{12} + \frac{71}{348} a^{11} + \frac{2}{29} a^{10} - \frac{59}{348} a^{9} + \frac{1}{348} a^{8} - \frac{107}{348} a^{7} - \frac{13}{29} a^{6} + \frac{21}{58} a^{5} - \frac{67}{348} a^{4} - \frac{5}{29} a^{3} - \frac{91}{348} a^{2} + \frac{83}{348} a + \frac{7}{29}$, $\frac{1}{54636} a^{15} + \frac{67}{54636} a^{14} + \frac{163}{54636} a^{13} - \frac{1289}{27318} a^{12} - \frac{483}{4553} a^{11} - \frac{463}{1884} a^{10} + \frac{2068}{13659} a^{9} - \frac{5333}{54636} a^{8} + \frac{4019}{18212} a^{7} - \frac{3967}{18212} a^{6} + \frac{3557}{13659} a^{5} + \frac{3363}{9106} a^{4} - \frac{27049}{54636} a^{3} + \frac{3920}{13659} a^{2} - \frac{13}{58} a + \frac{857}{4553}$, $\frac{1}{20952523548} a^{16} + \frac{9379}{1904774868} a^{15} - \frac{2095048}{5238130887} a^{14} - \frac{150913639}{3492087258} a^{13} + \frac{7968547}{1904774868} a^{12} + \frac{1236640039}{5238130887} a^{11} + \frac{2443406423}{20952523548} a^{10} + \frac{4781350487}{20952523548} a^{9} + \frac{2406628555}{20952523548} a^{8} + \frac{264322813}{3492087258} a^{7} + \frac{1145955809}{5238130887} a^{6} - \frac{8593222585}{20952523548} a^{5} + \frac{1597518260}{5238130887} a^{4} - \frac{1680286637}{20952523548} a^{3} + \frac{213720910}{476193717} a^{2} - \frac{7928609}{1164029086} a - \frac{20600829}{52910413}$, $\frac{1}{877527777258270929107152} a^{17} - \frac{4493599979}{906536959977552612714} a^{16} - \frac{1933396579295456537}{438763888629135464553576} a^{15} + \frac{625107062395669450}{630407885961401529531} a^{14} + \frac{6786262654989917996203}{79775252478024629918832} a^{13} + \frac{4016652163170582281483}{438763888629135464553576} a^{12} - \frac{112463107384086732851395}{877527777258270929107152} a^{11} + \frac{33434136567174329535539}{877527777258270929107152} a^{10} + \frac{205737108475561400413567}{877527777258270929107152} a^{9} + \frac{2419168688133226598363}{24375771590507525808532} a^{8} + \frac{44810706450503180459917}{438763888629135464553576} a^{7} - \frac{434780044234183665002713}{877527777258270929107152} a^{6} + \frac{175611140895864309084817}{438763888629135464553576} a^{5} - \frac{3062204979912076963235}{877527777258270929107152} a^{4} + \frac{246476749433455375753}{4985953279876539369927} a^{3} + \frac{68836546987163799578957}{292509259086090309702384} a^{2} - \frac{384931665576190875722}{1661984426625513123309} a - \frac{300337927816768981}{50363164443197367373}$
Class group and class number
$C_{3}\times C_{3}\times C_{9}\times C_{9}\times C_{18}$, which has order $13122$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1201631.239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-527}) \), 3.1.527.1 x3, \(\Q(\zeta_{7})^+\), 6.0.146363183.2, 6.0.351418002383.1 x2, 6.0.351418002383.2, 9.3.17219482116767.4 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $31$ | 31.6.3.1 | $x^{6} - 62 x^{4} + 961 x^{2} - 2413071$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.6.3.1 | $x^{6} - 62 x^{4} + 961 x^{2} - 2413071$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.6.3.1 | $x^{6} - 62 x^{4} + 961 x^{2} - 2413071$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |