Normalized defining polynomial
\( x^{18} - 6 x^{17} + 21 x^{16} - 66 x^{15} + 297 x^{14} - 742 x^{13} + 1346 x^{12} - 4058 x^{11} + 9676 x^{10} - 2428 x^{9} + 22175 x^{8} - 86316 x^{7} - 133405 x^{6} - 23318 x^{5} + 742493 x^{4} + 1890250 x^{3} + 3195846 x^{2} + 1805644 x + 966337 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-43281927256346630219321487392768=-\,2^{27}\cdot 7^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(728=2^{3}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{728}(1,·)$, $\chi_{728}(555,·)$, $\chi_{728}(211,·)$, $\chi_{728}(417,·)$, $\chi_{728}(9,·)$, $\chi_{728}(529,·)$, $\chi_{728}(659,·)$, $\chi_{728}(235,·)$, $\chi_{728}(347,·)$, $\chi_{728}(81,·)$, $\chi_{728}(289,·)$, $\chi_{728}(547,·)$, $\chi_{728}(625,·)$, $\chi_{728}(107,·)$, $\chi_{728}(113,·)$, $\chi_{728}(627,·)$, $\chi_{728}(393,·)$, $\chi_{728}(443,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{996} a^{13} - \frac{17}{166} a^{12} + \frac{35}{249} a^{11} - \frac{32}{249} a^{10} - \frac{187}{996} a^{9} + \frac{47}{498} a^{8} + \frac{1}{166} a^{7} + \frac{1}{498} a^{6} + \frac{145}{498} a^{5} - \frac{27}{166} a^{4} - \frac{71}{166} a^{3} - \frac{74}{249} a^{2} - \frac{135}{332} a + \frac{65}{249}$, $\frac{1}{996} a^{14} - \frac{55}{996} a^{12} + \frac{52}{249} a^{11} + \frac{203}{996} a^{10} - \frac{14}{249} a^{9} - \frac{39}{332} a^{8} + \frac{29}{249} a^{7} - \frac{1}{249} a^{6} + \frac{3}{83} a^{5} + \frac{40}{83} a^{4} + \frac{19}{249} a^{3} + \frac{93}{332} a^{2} + \frac{71}{249} a - \frac{41}{332}$, $\frac{1}{996} a^{15} + \frac{19}{249} a^{12} - \frac{65}{996} a^{11} - \frac{31}{249} a^{10} + \frac{14}{249} a^{9} - \frac{16}{83} a^{8} - \frac{43}{249} a^{7} + \frac{73}{498} a^{6} + \frac{247}{498} a^{5} + \frac{65}{498} a^{4} + \frac{85}{332} a^{3} - \frac{5}{83} a^{2} - \frac{81}{166} a - \frac{71}{498}$, $\frac{1}{2131488588522372} a^{16} + \frac{236808415919}{1065744294261186} a^{15} + \frac{562767293075}{2131488588522372} a^{14} + \frac{39916912243}{532872147130593} a^{13} - \frac{19341289783164}{177624049043531} a^{12} - \frac{86774976589783}{532872147130593} a^{11} + \frac{434459075785325}{2131488588522372} a^{10} + \frac{69773185113292}{532872147130593} a^{9} + \frac{363119373961235}{2131488588522372} a^{8} + \frac{70678810759460}{532872147130593} a^{7} - \frac{36030261805427}{1065744294261186} a^{6} - \frac{41812287946687}{177624049043531} a^{5} + \frac{246002110862383}{2131488588522372} a^{4} - \frac{61035816426478}{532872147130593} a^{3} + \frac{263926905940709}{710496196174124} a^{2} - \frac{38171781913271}{355248098087062} a - \frac{558594063415243}{2131488588522372}$, $\frac{1}{87484882222451185018651919844} a^{17} - \frac{4743614840218}{21871220555612796254662979961} a^{16} + \frac{2316905519479629133597045}{21871220555612796254662979961} a^{15} - \frac{20783907495590266539150107}{43742441111225592509325959922} a^{14} - \frac{4937018753911368559275283}{43742441111225592509325959922} a^{13} - \frac{1963006849956712659230144741}{87484882222451185018651919844} a^{12} - \frac{5174850319300114924265868296}{21871220555612796254662979961} a^{11} + \frac{2637002679938285452472777833}{14580813703741864169775319974} a^{10} - \frac{13187878841123672113475848883}{87484882222451185018651919844} a^{9} - \frac{3715874562274749904276472129}{87484882222451185018651919844} a^{8} + \frac{4610543412318114129082519966}{21871220555612796254662979961} a^{7} - \frac{2949779740163884323450463966}{21871220555612796254662979961} a^{6} + \frac{12104669230247077570870788557}{29161627407483728339550639948} a^{5} - \frac{8354750207834813354270896997}{21871220555612796254662979961} a^{4} + \frac{7841222050124682724122374987}{43742441111225592509325959922} a^{3} + \frac{2681318926715011776932051153}{7290406851870932084887659987} a^{2} - \frac{10163970864223434847458081431}{29161627407483728339550639948} a + \frac{37569882647306744161231664671}{87484882222451185018651919844}$
Class group and class number
$C_{4}\times C_{268}$, which has order $1072$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 3.3.8281.1, 3.3.169.1, \(\Q(\zeta_{7})^+\), 3.3.8281.2, 6.0.35110380032.7, 6.0.14623232.1, 6.0.1229312.1, 6.0.35110380032.4, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |