Normalized defining polynomial
\( x^{18} - 9 x^{17} + 51 x^{16} - 180 x^{15} + 432 x^{14} - 396 x^{13} + 3096 x^{12} - 25632 x^{11} + 106011 x^{10} - 219663 x^{9} + 344619 x^{8} - 311886 x^{7} + 662610 x^{6} - 723762 x^{5} + 2786436 x^{4} + 2069244 x^{3} + 4963797 x^{2} + 3181869 x + 1939407 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-43203768346609530320797232726016=-\,2^{16}\cdot 3^{33}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{5} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{25} a^{15} - \frac{1}{25} a^{14} + \frac{1}{25} a^{12} + \frac{2}{25} a^{11} + \frac{2}{25} a^{10} - \frac{11}{25} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{6}{25} a^{6} - \frac{4}{25} a^{5} + \frac{4}{25} a^{3} - \frac{7}{25} a^{2} + \frac{8}{25} a + \frac{11}{25}$, $\frac{1}{25} a^{16} - \frac{1}{25} a^{14} + \frac{1}{25} a^{13} - \frac{2}{25} a^{12} - \frac{6}{25} a^{11} + \frac{1}{25} a^{10} - \frac{1}{25} a^{9} - \frac{2}{5} a^{8} - \frac{11}{25} a^{7} - \frac{2}{5} a^{6} - \frac{4}{25} a^{5} + \frac{4}{25} a^{4} + \frac{2}{25} a^{3} + \frac{11}{25} a^{2} + \frac{9}{25} a - \frac{4}{25}$, $\frac{1}{39966893359969266887315481764524404459348473155770084483475} a^{17} + \frac{256264577638087617908765847985316166137455913536419722232}{39966893359969266887315481764524404459348473155770084483475} a^{16} + \frac{38944985351974779361994171873045139325750787509372482448}{39966893359969266887315481764524404459348473155770084483475} a^{15} - \frac{43846694322466477770981614093882823571643082904446548757}{1598675734398770675492619270580976178373938926230803379339} a^{14} - \frac{503889541542100823521707069486002298779804473928649781457}{7993378671993853377463096352904880891869694631154016896695} a^{13} + \frac{2156938979604797504773654008755112290591679581087566295324}{39966893359969266887315481764524404459348473155770084483475} a^{12} + \frac{4609852933764596659212125219438253711966904045581158972902}{39966893359969266887315481764524404459348473155770084483475} a^{11} - \frac{3069276248755652593773700152582978954183861286205443361531}{39966893359969266887315481764524404459348473155770084483475} a^{10} - \frac{7237286308224322906702773157463970189737454695097025237021}{39966893359969266887315481764524404459348473155770084483475} a^{9} - \frac{17629381965746738239523698289990915566574603554739569006476}{39966893359969266887315481764524404459348473155770084483475} a^{8} - \frac{4206808164642647836011476620616614753953459218837070771232}{39966893359969266887315481764524404459348473155770084483475} a^{7} - \frac{481443613943981015579429199772857534611497917071278351318}{39966893359969266887315481764524404459348473155770084483475} a^{6} - \frac{579920805255501556576424957150257731928370286026501704369}{1598675734398770675492619270580976178373938926230803379339} a^{5} + \frac{2733326583191505294920225357927850330221306039114570919669}{7993378671993853377463096352904880891869694631154016896695} a^{4} + \frac{13792771562436006061258589778268243039072632909718787417251}{39966893359969266887315481764524404459348473155770084483475} a^{3} - \frac{13125628712326361785992783981484118320969801463764411553027}{39966893359969266887315481764524404459348473155770084483475} a^{2} - \frac{18067374678437851629395752019592361950524102298783774446939}{39966893359969266887315481764524404459348473155770084483475} a + \frac{18626045964253860841891564378930495935246111915475843761226}{39966893359969266887315481764524404459348473155770084483475}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54838383.634739265 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \), 3.1.108.1, 6.0.171915696.7, 9.1.11019960576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |