Normalized defining polynomial
\( x^{18} - 2 x^{17} - 11 x^{16} + 2 x^{15} + 95 x^{14} - 26 x^{13} - 85 x^{12} - 154 x^{11} + 1159 x^{10} - 2970 x^{9} - 4843 x^{8} - 4982 x^{7} + 12797 x^{6} + 18420 x^{5} + 54332 x^{4} + 85532 x^{3} + 82964 x^{2} + 37800 x + 46984 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-430285483449173885556359168=-\,2^{18}\cdot 7^{12}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7} a^{11} - \frac{3}{7} a^{10} + \frac{3}{7} a^{9} - \frac{1}{7} a^{8} + \frac{3}{7} a^{7} + \frac{3}{7} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{3}{7} a^{3}$, $\frac{1}{21} a^{12} - \frac{2}{7} a^{10} - \frac{2}{7} a^{9} + \frac{1}{3} a^{8} - \frac{3}{7} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} + \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{21} a^{13} - \frac{1}{7} a^{10} + \frac{4}{21} a^{9} + \frac{2}{7} a^{8} - \frac{3}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} - \frac{2}{7} a^{4} + \frac{10}{21} a^{3} + \frac{1}{3} a$, $\frac{1}{42} a^{14} - \frac{1}{42} a^{12} + \frac{1}{42} a^{10} - \frac{19}{42} a^{8} - \frac{2}{7} a^{7} - \frac{1}{14} a^{6} + \frac{3}{7} a^{5} + \frac{13}{42} a^{4} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{882} a^{15} - \frac{1}{126} a^{14} - \frac{1}{294} a^{13} - \frac{5}{882} a^{12} - \frac{23}{882} a^{11} + \frac{101}{882} a^{10} + \frac{89}{294} a^{9} + \frac{1}{126} a^{8} - \frac{13}{98} a^{7} - \frac{65}{294} a^{6} - \frac{233}{882} a^{5} + \frac{53}{882} a^{4} + \frac{433}{882} a^{3} + \frac{5}{42} a^{2} - \frac{3}{7} a - \frac{25}{63}$, $\frac{1}{12348} a^{16} + \frac{1}{3087} a^{15} + \frac{67}{12348} a^{14} + \frac{22}{3087} a^{13} - \frac{89}{4116} a^{12} + \frac{151}{3087} a^{11} - \frac{5279}{12348} a^{10} - \frac{272}{3087} a^{9} + \frac{5693}{12348} a^{8} + \frac{76}{1029} a^{7} + \frac{5623}{12348} a^{6} - \frac{659}{3087} a^{5} - \frac{1357}{12348} a^{4} + \frac{355}{6174} a^{3} + \frac{127}{294} a^{2} - \frac{5}{63} a + \frac{20}{441}$, $\frac{1}{353598958145122294720656330245988} a^{17} + \frac{95613917521973209222850186}{12628534219468653382880583223071} a^{16} + \frac{191396339948581010772588161909}{353598958145122294720656330245988} a^{15} - \frac{392111841458301705610858667405}{176799479072561147360328165122994} a^{14} - \frac{7853503250716703483030824189097}{353598958145122294720656330245988} a^{13} + \frac{3989770298389042827871380738845}{176799479072561147360328165122994} a^{12} - \frac{246907320529490796712750364209}{353598958145122294720656330245988} a^{11} - \frac{1598393176764987956814536031491}{176799479072561147360328165122994} a^{10} - \frac{6486222757741135902977098324817}{16838045625958204510507444297428} a^{9} - \frac{49601297451707169693840988224023}{176799479072561147360328165122994} a^{8} - \frac{10111469326496111131503623593019}{353598958145122294720656330245988} a^{7} - \frac{18134512014547963760734445563769}{176799479072561147360328165122994} a^{6} - \frac{25735861222791608802570839669969}{117866319381707431573552110081996} a^{5} - \frac{13204767750290047808057001515732}{88399739536280573680164082561497} a^{4} - \frac{37653634090144965395012266498612}{88399739536280573680164082561497} a^{3} + \frac{3255799136188678209419056765475}{25257068438937306765761166446142} a^{2} + \frac{438985030713515450510003198908}{1403170468829850375875620358119} a + \frac{2821538033103650735269933642556}{12628534219468653382880583223071}$
Class group and class number
$C_{12}$, which has order $12$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 117049.901978 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-17}) \), 3.1.3332.1 x3, \(\Q(\zeta_{7})^+\), 6.0.754951232.1, 6.0.754951232.2, 6.0.15407168.1 x2, 9.3.36992610368.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.15407168.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $17$ | 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |