Normalized defining polynomial
\( x^{18} - 3 x^{17} - 9 x^{16} + 53 x^{15} - 138 x^{13} + 307 x^{12} - 975 x^{11} - 474 x^{10} + 1335 x^{9} - 3918 x^{8} + 18246 x^{7} + 44148 x^{6} - 5832 x^{5} - 17880 x^{4} + 21719 x^{3} + 16641 x^{2} - 15837 x + 11863 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4287598670306719523049937245819=-\,3^{24}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(171=3^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{171}(64,·)$, $\chi_{171}(1,·)$, $\chi_{171}(7,·)$, $\chi_{171}(145,·)$, $\chi_{171}(151,·)$, $\chi_{171}(88,·)$, $\chi_{171}(94,·)$, $\chi_{171}(31,·)$, $\chi_{171}(160,·)$, $\chi_{171}(163,·)$, $\chi_{171}(37,·)$, $\chi_{171}(103,·)$, $\chi_{171}(106,·)$, $\chi_{171}(46,·)$, $\chi_{171}(49,·)$, $\chi_{171}(115,·)$, $\chi_{171}(121,·)$, $\chi_{171}(58,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{77} a^{15} - \frac{5}{77} a^{14} - \frac{23}{77} a^{13} - \frac{15}{77} a^{12} - \frac{19}{77} a^{11} + \frac{3}{11} a^{10} - \frac{4}{77} a^{9} - \frac{4}{11} a^{8} + \frac{17}{77} a^{6} - \frac{18}{77} a^{5} + \frac{10}{77} a^{4} + \frac{3}{77} a^{3} - \frac{18}{77} a^{2} - \frac{5}{77} a - \frac{24}{77}$, $\frac{1}{77} a^{16} + \frac{29}{77} a^{14} + \frac{24}{77} a^{13} - \frac{17}{77} a^{12} + \frac{3}{77} a^{11} + \frac{24}{77} a^{10} + \frac{29}{77} a^{9} + \frac{2}{11} a^{8} + \frac{17}{77} a^{7} - \frac{10}{77} a^{6} - \frac{3}{77} a^{5} - \frac{24}{77} a^{4} - \frac{3}{77} a^{3} - \frac{18}{77} a^{2} + \frac{4}{11} a + \frac{34}{77}$, $\frac{1}{1279952263965005579562301583487876051099563} a^{17} + \frac{416732929014614590988595683570294891279}{116359296724091416323845598498897822827233} a^{16} - \frac{1900502070208468883379721494424060615590}{1279952263965005579562301583487876051099563} a^{15} - \frac{610574147612320075010066716596716057049239}{1279952263965005579562301583487876051099563} a^{14} - \frac{329782972762003857829973159580369016700960}{1279952263965005579562301583487876051099563} a^{13} + \frac{82092005012537853304568345463408115391474}{1279952263965005579562301583487876051099563} a^{12} + \frac{393149719193387180188765241983469560276464}{1279952263965005579562301583487876051099563} a^{11} - \frac{585353602371240626213388921036436391820942}{1279952263965005579562301583487876051099563} a^{10} - \frac{63045877420539180507819816358918433498721}{1279952263965005579562301583487876051099563} a^{9} - \frac{5050929697305024691371094375430299584474}{116359296724091416323845598498897822827233} a^{8} + \frac{86640160660020752992645761715917419556927}{1279952263965005579562301583487876051099563} a^{7} - \frac{455446546738848713739974216868922807819634}{1279952263965005579562301583487876051099563} a^{6} + \frac{590192462029624389322477448630430419220654}{1279952263965005579562301583487876051099563} a^{5} - \frac{76353456140586957925031719500778504793411}{1279952263965005579562301583487876051099563} a^{4} - \frac{379810371787207023121418528913362725475278}{1279952263965005579562301583487876051099563} a^{3} + \frac{286435639127889574223662346860348120585988}{1279952263965005579562301583487876051099563} a^{2} - \frac{617662804584481744641051028136645182574522}{1279952263965005579562301583487876051099563} a + \frac{270160747596924795642411143349991208273985}{1279952263965005579562301583487876051099563}$
Class group and class number
$C_{2}\times C_{14}$, which has order $28$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1472619.0824 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.3.29241.1, 3.3.361.1, \(\Q(\zeta_{9})^+\), 3.3.29241.2, 6.0.16245685539.2, 6.0.2476099.1, 6.0.45001899.1, 6.0.16245685539.1, 9.9.25002110044521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |