Normalized defining polynomial
\( x^{18} + 126 x^{16} + 6615 x^{14} + 187278 x^{12} + 3090087 x^{10} - 33286 x^{9} + 29950074 x^{8} - 2097018 x^{7} + 163061514 x^{6} - 44037378 x^{5} + 444713220 x^{4} - 342512940 x^{3} + 466948881 x^{2} - 719277174 x + 1229018617 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-42858645692297580966155834896045767=-\,3^{45}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(783=3^{3}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{783}(1,·)$, $\chi_{783}(260,·)$, $\chi_{783}(262,·)$, $\chi_{783}(521,·)$, $\chi_{783}(523,·)$, $\chi_{783}(782,·)$, $\chi_{783}(86,·)$, $\chi_{783}(88,·)$, $\chi_{783}(347,·)$, $\chi_{783}(349,·)$, $\chi_{783}(608,·)$, $\chi_{783}(610,·)$, $\chi_{783}(173,·)$, $\chi_{783}(175,·)$, $\chi_{783}(434,·)$, $\chi_{783}(436,·)$, $\chi_{783}(695,·)$, $\chi_{783}(697,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6616} a^{9} + \frac{63}{6616} a^{7} + \frac{1323}{6616} a^{5} - \frac{1471}{3308} a^{3} + \frac{1761}{6616} a - \frac{103}{6616}$, $\frac{1}{6616} a^{10} + \frac{63}{6616} a^{8} + \frac{1323}{6616} a^{6} - \frac{1471}{3308} a^{4} + \frac{1761}{6616} a^{2} - \frac{103}{6616} a$, $\frac{1}{6616} a^{11} - \frac{1323}{3308} a^{7} - \frac{283}{6616} a^{5} + \frac{1859}{6616} a^{3} - \frac{103}{6616} a^{2} + \frac{1529}{6616} a - \frac{127}{6616}$, $\frac{1}{6616} a^{12} - \frac{1323}{3308} a^{8} - \frac{283}{6616} a^{6} + \frac{1859}{6616} a^{4} - \frac{103}{6616} a^{3} + \frac{1529}{6616} a^{2} - \frac{127}{6616} a$, $\frac{1}{6616} a^{13} + \frac{1015}{6616} a^{7} + \frac{2653}{6616} a^{5} - \frac{103}{6616} a^{4} - \frac{2587}{6616} a^{3} - \frac{127}{6616} a^{2} + \frac{971}{3308} a - \frac{641}{3308}$, $\frac{1}{7597228242248} a^{14} + \frac{87522263}{7597228242248} a^{13} + \frac{49}{3798614121124} a^{12} - \frac{9206736}{949653530281} a^{11} + \frac{3773}{7597228242248} a^{10} - \frac{140631637}{3798614121124} a^{9} + \frac{36015}{3798614121124} a^{8} + \frac{775437544195}{7597228242248} a^{7} + \frac{352947}{3798614121124} a^{6} + \frac{1813180676311}{3798614121124} a^{5} - \frac{597121106017}{1899307060562} a^{4} + \frac{1837287643209}{3798614121124} a^{3} + \frac{581334088969}{1899307060562} a^{2} - \frac{1983154996163}{7597228242248} a + \frac{101912842902}{949653530281}$, $\frac{1}{7597228242248} a^{15} + \frac{105}{7597228242248} a^{13} + \frac{267827781}{3798614121124} a^{12} + \frac{2205}{3798614121124} a^{11} + \frac{210922491}{7597228242248} a^{10} + \frac{94325}{7597228242248} a^{9} - \frac{1404056500119}{7597228242248} a^{8} + \frac{540225}{3798614121124} a^{7} - \frac{770516019405}{1899307060562} a^{6} + \frac{3176523}{3798614121124} a^{5} - \frac{498354916297}{3798614121124} a^{4} + \frac{1406697939535}{7597228242248} a^{3} + \frac{635045564111}{3798614121124} a^{2} + \frac{3764177132179}{7597228242248} a + \frac{733782403615}{3798614121124}$, $\frac{1}{7597228242248} a^{16} + \frac{532309171}{7597228242248} a^{13} - \frac{735}{949653530281} a^{12} - \frac{46799545}{3798614121124} a^{11} - \frac{37730}{949653530281} a^{10} + \frac{2446521}{3798614121124} a^{9} - \frac{1620675}{1899307060562} a^{8} + \frac{287088052909}{949653530281} a^{7} - \frac{8470728}{949653530281} a^{6} - \frac{720400265215}{1899307060562} a^{5} + \frac{542821876419}{7597228242248} a^{4} + \frac{37882704107}{7597228242248} a^{3} + \frac{1188205826625}{3798614121124} a^{2} - \frac{444443967461}{7597228242248} a - \frac{1212703313583}{3798614121124}$, $\frac{1}{7597228242248} a^{17} - \frac{833}{949653530281} a^{13} + \frac{281213345}{3798614121124} a^{12} - \frac{46648}{949653530281} a^{11} - \frac{482647}{3798614121124} a^{10} - \frac{2244935}{1899307060562} a^{9} - \frac{3701037875557}{7597228242248} a^{8} - \frac{13714512}{949653530281} a^{7} - \frac{449425239311}{7597228242248} a^{6} - \frac{84001386}{949653530281} a^{5} - \frac{91357404849}{949653530281} a^{4} + \frac{715902597307}{7597228242248} a^{3} - \frac{134164402259}{7597228242248} a^{2} + \frac{100134242103}{1899307060562} a + \frac{346470364962}{949653530281}$
Class group and class number
$C_{111834}$, which has order $111834$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), \(\Q(\zeta_{9})^+\), 6.0.480048687.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | $18$ | R | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 29 | Data not computed | ||||||